RESUMO
Toxicity within superoxide dismutase-1 (SOD1)-associated familial amyotrophic lateral sclerosis (ALS) is non-cell autonomous with direct contribution from microglia. Microglia exhibit variable expression of neuroprotective and neurotoxic molecules throughout disease progression. The mechanisms regulating microglial phenotype within ALS are not well understood. This work presents a first study to examine the specific microglial phenotypic response in close association to motor neurons in a naturally occurring disease model of ALS, canine degenerative myelopathy (DM). Microglia closely associated with motor neurons were increased in all stages of DM progression, although only DM Late reached statistical significance. Furthermore, the number of arginase-1 expressing microglia per motor neuron were significantly increased in early stages of DM, whereas the number of inducible nitric oxide synthase (iNOS)-expressing microglia per motor neuron was indistinguishable from aged controls at all stages of disease. Fractalkine, a chemotactic molecule for microglia, was expressed in motor neurons, and the fractalkine receptor was specifically localized to microglia. However, we found no correlation between microglial response and lumbar spinal cord fractalkine levels. Taken together, these data suggest that arginase-1-expressing microglia are recruited to the motor neuron early in DM disease through a fractalkine-independent mechanism.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginase/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Cães , Óxido Nítrico Sintase Tipo II/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genéticaRESUMO
Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10(-5)), and was associated with increased probability of developing DM (P = 4.8 × 10(-6)) and earlier onset of disease (P = 1.7 × 10(-5)). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds.
Assuntos
Doenças do Cão/genética , Doenças Musculares/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Doenças da Medula Espinal/genética , Superóxido Dismutase/genética , Idade de Início , Animais , Modelos Animais de Doenças , Doenças do Cão/patologia , Cães , Feminino , Estudo de Associação Genômica Ampla , Homozigoto , Masculino , Doenças Musculares/patologia , Doenças Neurodegenerativas/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças da Medula Espinal/patologiaRESUMO
An autosomal recessive disease of Black Russian Terriers was previously described as a juvenile-onset, laryngeal paralysis and polyneuropathy similar to Charcot Marie Tooth disease in humans. We found that in addition to an axonal neuropathy, affected dogs exhibit microphthalmia, cataracts, and miotic pupils. On histopathology, affected dogs exhibit a spongiform encephalopathy characterized by accumulations of abnormal, membrane-bound vacuoles of various sizes in neuronal cell bodies, axons and adrenal cells. DNA from an individual dog with this polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV) was used to generate a whole genome sequence which contained a homozygous RAB3GAP1:c.743delC mutation that was absent from 73 control canine whole genome sequences. An additional 12 Black Russian Terriers with POANV were RAB3GAP1:c.743delC homozygotes. DNA samples from 249 Black Russian Terriers with no known signs of POANV were either heterozygotes or homozygous for the reference allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM), a severe developmental disorder characterized by abnormalities of the eye, genitals and nervous system including a predominantly axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission. The neuronal vacuolation and membranous inclusions and vacuoles in axons seen in this canine disorder likely reflect alterations of these processes. Thus, this canine disease could serve as a model for WARBM and provide insight into its pathogenesis and treatment.
Assuntos
Mutação , Polineuropatias/genética , Síndrome de Walker-Warburg/genética , Proteínas rab3 de Ligação ao GTP/genética , Animais , Catarata/genética , Catarata/patologia , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Citoplasma/ultraestrutura , Modelos Animais de Doenças , Cães , Feminino , Músculos Laríngeos/ultraestrutura , Laringe/patologia , Masculino , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo , Polineuropatias/patologia , Polineuropatias/fisiopatologia , Polineuropatias/veterinária , Síndrome de Walker-Warburg/patologia , Síndrome de Walker-Warburg/fisiopatologia , Síndrome de Walker-Warburg/veterináriaRESUMO
The CLN2 form of neuronal ceroid lipofuscinosis, a type of Batten disease, is a lysosomal storage disorder caused by a deficiency of the enzyme tripeptidyl peptidase-1 (TPP1). Patients exhibit progressive neurodegeneration and loss of motor, cognitive, and visual functions, leading to death by the early teenage years. TPP1-null Dachshunds recapitulate human CLN2 disease. To characterize the safety and pharmacology of recombinant human (rh) TPP1 administration to the cerebrospinal fluid (CSF) as a potential enzyme replacement therapy (ERT) for CLN2 disease, TPP1-null and wild-type (WT) Dachshunds were given repeated intracerebroventricular (ICV) infusions and the pharmacokinetic (PK) profile, central nervous system (CNS) distribution, and safety were evaluated. TPP1-null animals and WT controls received 4 or 16mg of rhTPP1 or artificial cerebrospinal fluid (aCSF) vehicle every other week. Elevated CSF TPP1 concentrations were observed for 2-3 days after the first ICV infusion and were approximately 1000-fold higher than plasma levels at the same time points. Anti-rhTPP1 antibodies were detected in CSF and plasma after repeat rhTPP1 administration, with titers generally higher in TPP1-null than in WT animals. Widespread brain distribution of rhTPP1 was observed after chronic administration. Expected histological changes were present due to the CNS delivery catheters and were similar in rhTPP1 and vehicle-treated animals, regardless of genotype. Neuropathological evaluation demonstrated the clearance of lysosomal storage, preservation of neuronal morphology, and reduction in brain inflammation with treatment. This study demonstrates the favorable safety and pharmacology profile of rhTPP1 ERT administered directly to the CNS and supports clinical evaluation in patients with CLN2 disease.
Assuntos
Aminopeptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Serina Proteases/administração & dosagem , Aminopeptidases/efeitos adversos , Aminopeptidases/imunologia , Aminopeptidases/farmacocinética , Animais , Anticorpos/sangue , Anticorpos/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/ultraestrutura , Dipeptidil Peptidases e Tripeptidil Peptidases/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacocinética , Progressão da Doença , Cães , Avaliação Pré-Clínica de Medicamentos , Genótipo , Infusões Intraventriculares , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Serina Proteases/efeitos adversos , Serina Proteases/imunologia , Serina Proteases/farmacocinética , Tripeptidil-Peptidase 1RESUMO
Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Doenças do Cão/genética , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Doenças da Medula Espinal/patologia , Raízes Nervosas Espinhais/patologia , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/veterinária , Animais , Modelos Animais de Doenças , Doenças do Cão/enzimologia , Cães , Genótipo , Mutação/genética , Doenças da Medula Espinal/etiologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/veterinária , Estatísticas não Paramétricas , Superóxido Dismutase/genética , Superóxido Dismutase-1RESUMO
BRAF is one of multiple RAF proteins responsible for the activation of the MAPK cell signalling cascade involved in cell growth, differentiation, and survival. A hotspot BRAFV600E mutation, in exon 15, was determined to be a driver in 100% hairy cell leukaemias, 50%-60% of human melanomas, 30%-50% of human thyroid carcinomas and 10%-20% of human colorectal carcinomas. The orthologous BRAFV595E mutation was seen in 67% and 80% of canine bladder transitional cell carcinomas and prostatic adenocarcinomas, respectively. Since veterinary and human cancers exploit similar pathways and BRAF is highly conserved across species, BRAF can be expected to be a driver in a feline cancer. Primers were developed to amplify exon 15 of feline BRAF. One hundred ninety-six feline tumours were analysed. Sanger sequencing of the 211 bp PCR amplicon was done. A BRAF mutation was found in one tumour, a cutaneous melanoma. The mutation was a BRAFV597E mutation, orthologous to the canine and human hotspot mutations. A common synonymous variant, BRAFT586T, was seen in 23% (47/196) of tumours. This variant was suspected to be a single nucleotide polymorphism. BRAF was not frequently mutated in common feline tumours or in tumour types that frequently harbour BRAF mutations in human and canine cancers. As is seen in canine cancer genomics, the mutational profile in feline tumours may not parallel the histologic equivalent in human oncology.
Assuntos
Doenças do Gato , Éxons , Mutação , Proteínas Proto-Oncogênicas B-raf , Gatos , Animais , Doenças do Gato/genética , Proteínas Proto-Oncogênicas B-raf/genética , Éxons/genética , Neoplasias/veterinária , Neoplasias/genética , Cães , MasculinoRESUMO
Bacillary hemoglobinuria (BH) is an infectious disease, mostly affecting cattle, caused by Clostridium haemolyticum (C. novyi type D), with acute hepatic necrosis and intravascular hemolysis. Cattle are typically predisposed to BH by liver injury caused by Fasciola hepatica, although cases have been reported in cattle without evidence of this parasite. Here we describe a cluster of 14 BH cases from 7 counties in north-central to central Missouri submitted to a veterinary diagnostic laboratory between December 2020 and April 2023. Postmortem examination in all cases revealed hemoglobinuria and acute hepatic necrosis with large numbers of gram-positive bacilli with terminal-to-subterminal spores. Flukes, fluke ova, and/or fluke pigment consistent with Fascioloides magna were identified in 12 of 14 cases. Sequences of the nuclear ribosomal internal transcribed spacer 1 (ITS1) from one fluke had 100% identity to F. magna. C. novyi was detected by fluorescent antibody testing of liver impression smears (11 of 12 cases) and by immunohistochemistry of liver sections (7 of 7 cases). PCR on formalin-fixed, paraffin-embedded tissues amplified the C. haemolyticum beta toxin gene in each of the 7 cases tested. To our knowledge, a confirmed cluster of BH associated with F. magna has not been reported previously in cattle.
RESUMO
Dogs homozygous for missense mutations in the SOD1 gene develop a late-onset neuromuscular disorder called degenerative myelopathy (DM) that has many similarities to amyotrophic lateral sclerosis (ALS). Both disorders are characterized by widespread progressive declines in motor functions, accompanied by atrophic changes in the descending spinal cord tracts. Some forms of ALS are also associated with SOD1 mutations. In end-stage ALS, death usually occurs as a result of respiratory failure from severe functional impairment of respiratory muscles. The mechanisms that lead to this loss of function are not known. Dogs with DM are euthanized at all stages of disease progression, providing an opportunity to characterize the onset and progression of any pathological changes in the respiratory muscles that may precede respiratory failure. To characterize such potential disease-related pathology, we evaluated intercostal muscles from Boxer and Pembroke Welsh Corgi dogs that were euthanized at various stages of DM disease progression. DM was found to result in intercostal muscle atrophy, fibrosis, increased variability in muscle fiber size and shape, and alteration in muscle fiber type composition. This pathology was not accompanied by retraction of the motor neuron terminals from the muscle acetylcholine receptor complexes, suggesting that the muscle atrophy did not result from physical denervation. These findings provide a better understanding of the mechanisms that likely lead to respiratory failure in at least some forms of ALS and will be useful in the development and evaluation of potential therapeutic interventions using the DM model.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Músculos Intercostais/patologia , Doenças da Medula Espinal/veterinária , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Cães , Humanos , Mutação de Sentido Incorreto , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1RESUMO
GM2 gangliosidosis is a fatal lysosomal storage disease caused by a deficiency of ß-hexosaminidase (EC 3.2.1.52). There are two major isoforms of the enzyme: hexosaminidase A composed of an α and a ß subunit (encoded by HEXA and HEXB genes, respectively); and, hexosaminidase B composed of two ß subunits. Hexosaminidase A requires an activator protein encoded by GM2A to catabolize GM2 ganglioside, but even in the absence of the activator protein, it can hydrolyze the synthetic substrates commonly used to assess enzyme activity. GM2 gangliosidosis has been reported in Japanese Chin dogs, and we identified the disease in two related Japanese Chin dogs based on clinical signs, histopathology and elevated brain GM2 gangliosides. As in previous reports, we found normal or elevated hexosaminidase activity when measured with the synthetic substrates. This suggested that the canine disease is analogous to human AB variant of G(M2) gangliosidosis, which results from mutations in GM2A. However, only common neutral single nucleotide polymorphisms were found upon sequence analysis of the canine ortholog of GM2A from the affected Japanese Chins. When the same DNA samples were used to sequence HEXA, we identified a homozygous HEXA:c967G>A transition which predicts a p.E323K substitution. The glutamyl moiety at 323 is known to make an essential contribution to the active site of hexosaminidase A, and none of the 128 normal Japanese Chins and 92 normal dogs of other breeds that we tested was homozygous for HEXA:c967A. Thus it appears that the HEXA:c967G>A transition is responsible for the GM2 gangliosidosis in Japanese Chins.
Assuntos
Modelos Animais de Doenças , Doenças do Cão/genética , Gangliosidoses GM2/genética , Hexosaminidase B/genética , Mutação de Sentido Incorreto , Animais , Sequência de Bases , Sondas de DNA , Cães , Feminino , Masculino , Linhagem , Reação em Cadeia da PolimeraseRESUMO
Our study aims are: (1) to evaluate phenotypically normal canine conjunctival and orbital tissue and tissue from canine lobular orbital adenomas (CLOAs) for the presence of viral genomic material and (2) phylogenetically classify detected DNA viruses to determine if a DNA virus is associated with CLOAs. A total of 31 formalin fixed paraffin embedded CLOA tissue samples, 4 papillomas or sarcoid, and 10 fresh clinically normal conjunctival tissues were included in this study. Genomic DNA was isolated from all samples and sequencing libraries were prepared. The libraries were molecularly indexed and pooled and viral DNA was enriched via targeted sequence capture utilizing ViroCap. The libraries were sequenced on the Illumina HiSeq platform and compared to known viral DNA reference genomes to identify viral DNA. Carnivore parvovirus was identified in 6.4% and 20% of CLOA tissue and normal conjunctival samples, respectively. This study showed that conjunctival tissue from healthy dogs and CLOAs uncommonly harbor DNA viruses, and no DNA virus was associated with these tumors. Further studies are needed to evaluate the etiologic cause of CLOAs.
RESUMO
Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Doenças do Cão/genética , Genoma , Doenças Musculares/veterinária , Mutação de Sentido Incorreto , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Sequência de Bases , Primers do DNA , Doenças do Cão/patologia , Cães , Estudo de Associação Genômica Ampla , Homozigoto , Imuno-Histoquímica , Doenças Musculares/genética , Doenças Musculares/patologia , Reação em Cadeia da Polimerase , Especificidade da EspécieRESUMO
In collaboration with the American College of Veterinary Pathologists.
Assuntos
Patologia Veterinária , Médicos Veterinários , Animais , Humanos , Estados UnidosRESUMO
A 12 yr old castrated male Yorkshire terrier was presented with a history of an inoperable pheochromocytoma. Physical examination revealed a large, midabdominal mass. Neurologic examination was normal at presentation. An abdominal computed tomography scan revealed a 215 cm(3) mass in the region of the right kidney. Forty-eight hours after IV injection of 370 megabecquerels (MBq, equivalent to10 millicuries [mCi]) of metaiodobenzylguanidine labeled with radioactive iodine ([(131)I]MIBG), standard planar scintigraphy was performed. A diffuse area of moderate uptake was noted in the midabdominal region. The dog experienced stable disease for 1.5 mo after injection based on a follow-up computed tomography (CT) scan; however, 5 mo after injection, repeat CT imaging revealed progression of the tumor, and a second IV injection of 370 MBq (10 mCi) of [(131)I]MIBG was administered. The dog died 3 wk after the second injection as a result of gastrointestinal blood loss that was believed to be caused by compression-induced bowel ischemia by the mass. A full necropsy was not performed, but the mass was removed for histologic evaluation, which confirmed the diagnosis of pheochromocytoma. This report is the first to document the treatment of canine pheochromocytoma using [(131)I]MIBG.
Assuntos
Neoplasias das Glândulas Suprarrenais/veterinária , Doenças do Cão/radioterapia , Radioisótopos do Iodo/administração & dosagem , Iodobenzenos/administração & dosagem , Feocromocitoma/veterinária , Compostos Radiofarmacêuticos/administração & dosagem , Neoplasias das Glândulas Suprarrenais/radioterapia , Animais , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/patologia , Cães , Infusões Intravenosas , Masculino , Feocromocitoma/radioterapia , Tomografia Computadorizada por Raios X/veterináriaRESUMO
Canine distemper virus (CDV) has long been recognized as a cause of myocarditis; however, cases of myocarditis caused by naturally acquired CDV infection have been reported only rarely in dogs. We describe here our retrospective study of naturally acquired systemic CDV infection in 4 dogs, 4-7 wk old, that had myocarditis, with myocardial necrosis and fibrosis. One of the 4 dogs had intracytoplasmic eosinophilic inclusion bodies in cardiomyocytes. Other lesions included bronchointerstitial pneumonia (4 of 4), necrotizing hepatitis (2 of 4), splenic lymphoid necrosis (2 of 4), encephalitis (1 of 3; brain was not submitted in 1 case), and necrotizing gastroenteritis (1 of 4). The presence of CDV in the heart was confirmed by immunohistochemistry in all 4 dogs.
Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/complicações , Doenças do Cão/patologia , Miocardite/veterinária , Animais , Cinomose/virologia , Doenças do Cão/virologia , Cães , Coração/virologia , Miocardite/patologia , Miocardite/virologia , Estudos RetrospectivosRESUMO
The University of Missouri (MU) has established a colony of dystrophin-deficient dogs with a mixed breed background to mirror the variable pathologic effects of dystrophinopathies between persons of a given kindred to further the understanding of the genetic and molecular basis of the variable phenotype; thus to facilitate discovery of an effective therapeutic strategy. Herein we report the phenotype and genotype of a normal-appearing 10-month-old colony female that died suddenly. At necropsy examination, there were reduced skeletal and laryngeal muscle volume and mild dilatation of the oesophagus. Microscopic findings consisted of extensive degeneration and regeneration of the axial skeletal, tongue, oesophageal, and laryngeal muscles that were characterized by considerable central nucleation, individual fibre mineralization and interstitial fibrosis. The myocardial findings were limited to infiltration of adipose cells in the interstitium. The female dog was a compound heterozygote with one X chromosome carrying a point mutation in intron 6 of the dystrophin gene and the other X chromosome carrying a repetitive element insertion in intron 13 of the dystrophin gene. Although the direct cause of death was uncertain, it might likely be due to sudden cardiac death as has been seen in Duchenne muscular dystrophy patients. This case demonstrated dystrophinopathy in female dogs that have no ameliorating normal X chromosome.
Assuntos
Doenças do Cão/genética , Distrofina/deficiência , Distrofias Musculares/genética , Animais , Cães , Evolução Fatal , Feminino , HeterozigotoRESUMO
A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.
Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Sequência de Bases , Gatos , Códon sem Sentido , Cães , Homozigoto , Masculino , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/veterinária , OvinosRESUMO
Altered microglia function contributes to loss of CNS homeostasis during aging in the brain. Few studies have evaluated age-related alterations in spinal cord microglia. We previously demonstrated that lumbar spinal cord microglial expression of inducible nitric oxide synthase (iNOS) was equivalent between aging, neurologically normal dogs and dogs with canine degenerative myelopathy (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157). This unexpected finding suggested that microglia in aging spinal cord have a pro-inflammatory polarization. In this study, we reexamined our microglial results (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157) within the context of aging rather than disease by comparing microglia in aging versus young adult dogs. For both aging and young adult dogs, the density of microglia was significantly higher closest to the motor neuron cell body. However, there was no difference in densities between aging versus young adult dogs at all distances except for the furthest distance analyzed. The number of motor neurons with polarized microglia was higher in aging dogs; yet, the density per motor neuron of arginase-1-expressing microglia was reduced in aging dogs compared with young adult dogs. Finally, aging dogs had increased steady-state mRNA levels for genes consistent with activated microglia compared with young adult dogs. However, altered mRNA levels were limited to the lumbar spinal cord. These data suggested that aging dog spinal cord microglia exhibit regional immunophenotypic differences, which may render lumbar motor neurons more susceptible to age-related pathological insults.
Assuntos
Microglia , Medula Espinal , Envelhecimento , Animais , Cães , Neurônios MotoresRESUMO
Feline oral squamous cell carcinoma (FOSCC) may be the best naturally-occurring model of human head and neck squamous cell carcinoma (HNSCC). HNSCC can be broadly divided into human papillomavirus (HPV)-negative cancers and HPV-positive cancers where HPV is the causative agent. Previous studies in FOSCC have used both species-specific and species-nonspecific PCR primers that may be insensitive to the detection of PVs and other viruses that may be divergent from known sequences. ViroCap is a targeted capture and next generation sequencing tool that was designed to identify all known vertebrate DNA and RNA viruses. In this study we used a metagenomic approach using ViroCap for DNA viruses in 20 FOSCC, 9 normal feline oral mucosal, and 8 suspected PV positive control samples. We tested the hypothesis that viruses would be enriched in FOSCC compared to normal oral mucosa. The virome of the FOSCC and normal feline oral mucosa consisted of feline foamy virus in 7/20 and 2/9 (35% and 22%), feline torque teno virus in 2/20 and 0/9 (10% and 0%), alphaherpesvirus in 2/10 and 0/9 (10% and 0%), FIV (0% and 22%), Epstein-Barr virus in 1/20 and 0/9 (5% and 0%) and feline papillomavirus in 1/20 and 0/9 samples (5% and 0% respectively). Felis catus papillomavirus-3 was found in 1 of 20 FOSCC samples. A virus was not associated consistently with FOSCC. If PVs have a role in FOSCC it is at most a supplementary or uncommon role. FOSCC appears most closely related to HPV-negative HNSCC. Future research on FOSCC should focus on identifying genetic and environmental causes.
Assuntos
Carcinoma de Células Escamosas/veterinária , Coinfecção/veterinária , Neoplasias Bucais/veterinária , Infecções por Papillomavirus/veterinária , Vírus/classificação , Animais , Carcinoma de Células Escamosas/virologia , Gatos , Coinfecção/virologia , DNA Viral/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Neoplasias Bucais/virologia , Infecções por Papillomavirus/complicações , Inclusão em ParafinaRESUMO
BACKGROUND: Osteosarcoma (OSA) in dogs is an aggressive bone tumor with frequent chemotherapy failure and translational relevance for human health. HYPOTHESIS/OBJECTIVES: We hypothesized that dogs with OSA could be treated safely by ex vivo activated T-cells that were generated by autologous cancer vaccination and supported by interleukin-2 (IL-2) treatment with survival more than twice that reported for amputation alone. ANIMALS: Osteosarcoma-bearing dogs (n = 14) were enrolled in a single-arm prospective trial after complete staging before amputation. Four healthy dogs also were treated in a safety study. METHODS: Autologous cancer cell vaccinations were administered intradermally and dogs underwent leukapheresis. Mononuclear cell products were stimulated ex vivo with a T-cell-activating agent. Activated product was transfused and 5 SC IL-2 injections were administered q48h. Dogs were monitored for metastasis by thoracic radiography every 3 months. RESULTS: Autologous cancer cell vaccine and activated cellular therapy (ACT) products were successfully generated. Toxicity was minimal after premedicants were instituted before ACT. With premedication, all toxicities were grade I/II. Median disease-free interval for all dogs was 213 days. One dog developed cutaneous metastasis but then experienced spontaneous complete remission. Median survival time for all dogs was 415 days. Five dogs survived >730 days. CONCLUSIONS AND CLINICAL IMPORTANCE: This immunotherapy protocol without cytotoxic chemotherapy is safe and tolerable. Compared to historical amputation reports, survival was notably prolonged in this group of patients. Additional prospective studies are warranted to elucidate active immunologic mechanisms and further improve disease response and survival.
Assuntos
Neoplasias Ósseas , Doenças do Cão , Interleucina-2/uso terapêutico , Osteossarcoma , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/veterinária , Doenças do Cão/tratamento farmacológico , Cães , Osteossarcoma/tratamento farmacológico , Osteossarcoma/veterinária , Animais de Estimação , Estudos Prospectivos , Linfócitos T , Resultado do Tratamento , Vacinação/veterináriaRESUMO
Acute and, particularly, chronic copper exposures, along with defects in hepatic copper metabolism, altered excretion of copper, and/or nutritional imbalances between copper and other trace elements, can lead to hepatic accumulation of copper and primary copper toxicosis. There is interspecies variation in susceptibility to copper toxicosis, with sheep being the species most likely to develop this condition. Adult dairy goats and Boer crosses are generally considered resistant to chronic copper toxicosis, especially the hemolytic stage of this disease. The current report is rather unusual in that it describes instances of naturally occurring copper toxicosis with hemolysis and hemoglobinuric nephrosis in 3 adult Boer goats. In 2 of these goats, a possible source of excessive dietary copper was investigated but not definitively identified. In the third goat, the etiologic factors associated with the copper toxicosis were not determined. It appears that mature Boer goats are susceptible to the hemolytic stage of chronic copper toxicosis, which was not observed in a recent, large-scale copper intoxication involving lactating dairy goats. Copper analyses on both liver and kidney samples were necessary to confirm the diagnosis of copper toxicosis in all 3 goats. All feedstuffs associated with instances of copper toxicosis should be analyzed for iron, molybdenum, sulphur, and zinc as well as copper to determine what nutritional factors are contributing to the pathogenesis of this disease. Consideration also should be given to the ingestion of hepatotoxic plants and other toxic exposures, which could predispose an animal to secondary chronic copper toxicosis.