Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Infect Immun ; 91(4): e0052922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36877063

RESUMO

Hyperglycemia, or elevated blood glucose, renders individuals more prone to developing severe Staphylococcus aureus infections. S. aureus is the most common etiological agent of musculoskeletal infection, which is a common manifestation of disease in hyperglycemic patients. However, the mechanisms by which S. aureus causes severe musculoskeletal infection during hyperglycemia are incompletely characterized. To examine the influence of hyperglycemia on S. aureus virulence during invasive infection, we used a murine model of osteomyelitis and induced hyperglycemia with streptozotocin. We discovered that hyperglycemic mice exhibited increased bacterial burdens in bone and enhanced dissemination compared to control mice. Furthermore, infected hyperglycemic mice sustained increased bone destruction relative to euglycemic controls, suggesting that hyperglycemia exacerbates infection-associated bone loss. To identify genes contributing to S. aureus pathogenesis during osteomyelitis in hyperglycemic animals relative to euglycemic controls, we used transposon sequencing (TnSeq). We identified 71 genes uniquely essential for S. aureus survival in osteomyelitis in hyperglycemic mice and another 61 mutants with compromised fitness. Among the genes essential for S. aureus survival in hyperglycemic mice was the gene encoding superoxide dismutase A (sodA), one of two S. aureus superoxide dismutases involved in detoxifying reactive oxygen species (ROS). We determined that a sodA mutant exhibits attenuated survival in vitro in high glucose and in vivo during osteomyelitis in hyperglycemic mice. SodA therefore plays an important role during growth in high glucose and promotes S. aureus survival in bone. Collectively, these studies demonstrate that hyperglycemia increases the severity of osteomyelitis and identify genes contributing to S. aureus survival during hyperglycemic infection.


Assuntos
Hiperglicemia , Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus/genética , Genes Bacterianos , Camundongos Obesos , Hiperglicemia/genética , Glucose , Infecções Estafilocócicas/microbiologia , Osteomielite/microbiologia
2.
Infect Immun ; 90(11): e0041722, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36226943

RESUMO

Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.


Assuntos
Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus , Receptor 2 Toll-Like/genética , Receptor Toll-Like 9 , Infecções Estafilocócicas/microbiologia , Osteomielite/microbiologia , Receptores Toll-Like , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
JBMR Plus ; 7(3): e10694, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936362

RESUMO

Breast cancer has a high predilection for spreading to bone with approximately 70% of patients who succumb to disease harboring bone disseminated tumor cells. Despite this high prevalence, treatments for bone metastatic breast cancer predominantly manage morbidities, including pain and hypercalcemia, rather than reducing bone metastasis incidence or growth. Histone deacetylase inhibitors (HDACi), including panobinostat, entinostat, and valproic acid, typically slow primary tumor progression and are currently in clinical trials for the treatment of many cancers, including primary and metastatic breast cancer, but their effects on bone metastatic disease have not been examined in preclinical models. We report that treatment with the HDACi panobinostat, but not entinostat or valproic acid, significantly reduced trabecular bone volume in tumor-naïve mice, consistent with previous reports of HDACi-induced bone loss. Surprisingly, treatment with entinostat or panobinostat, but not valproic acid, increased tumor burden and incidence in an experimental model of breast cancer bone metastasis. In vitro, multiple HDACi stimulated expression of pro-osteolytic genes in breast tumor cells, suggesting this may be a mechanism by which HDACi fuel tumor growth. In support of this, combination therapy of panobinostat or entinostat with the antiresorptive bisphosphonate zoledronic acid prevented bone metastatic progression; however, the addition of zoledronic acid to panobinostat therapy failed to fully correct panobinostat-induced bone loss. Together these data demonstrate that select HDACi fuel bone metastatic growth and provide potential mechanistic and therapeutic avenues to offset these effects. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Front Cell Infect Microbiol ; 12: 985467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204648

RESUMO

Osteomyelitis, or bone infection, is a major complication of accidental trauma or surgical procedures involving the musculoskeletal system. Staphylococcus aureus is the most frequently isolated pathogen in osteomyelitis and triggers significant bone loss. Hypoxia-inducible factor (HIF) signaling has been implicated in antibacterial immune responses as well as bone development and repair. In this study, the impact of bone cell HIF signaling on antibacterial responses and pathologic changes in bone architecture was explored using genetic models with knockout of either Hif1a or a negative regulator of HIF-1α, Vhl. Deletion of Hif1a in osteoblast-lineage cells via Osx-Cre (Hif1aΔOB ) had no impact on bacterial clearance or pathologic changes in bone architecture in a model of post-traumatic osteomyelitis. Knockout of Vhl in osteoblast-lineage cells via Osx-Cre (VhlΔOB ) caused expected increases in trabecular bone volume per total volume (BV/TV) at baseline and, intriguingly, did not exhibit an infection-mediated decline in trabecular BV/TV, unlike control mice. Despite this phenotype, bacterial burdens were not affected by loss of Vhl. In vitro studies demonstrated that transcriptional regulation of the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its inhibitor osteoprotegerin (OPG) is altered in osteoblast-lineage cells with knockout of Vhl. After observing no impact on bacterial clearance with osteoblast-lineage conditional knockouts, a LysM-Cre model was used to generate Hif1aΔMyeloid and VhlΔMyeloid mouse models to explore the impact of myeloid cell HIF signaling. In both Hif1aΔMyeloid and VhlΔMyeloid models, bacterial clearance was not impacted. Moreover, minimal impacts on bone architecture were observed. Thus, skeletal HIF signaling was not found to impact bacterial clearance in our mouse model of post-traumatic osteomyelitis, but Vhl deletion in the osteoblast lineage was found to limit infection-mediated trabecular bone loss, possibly via altered regulation of RANKL-OPG gene transcription.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Animais , Antibacterianos , Osso Esponjoso , Citocinas , Ligantes , Camundongos , Camundongos Knockout , Osteoprotegerina/genética , Receptor Ativador de Fator Nuclear kappa-B , Staphylococcus aureus/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
5.
Cell Mol Gastroenterol Hepatol ; 14(4): 731-750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35835390

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is characterized by severe gastrointestinal inflammation, but many patients experience extra-intestinal disease. Bone loss is one common extra-intestinal manifestation of IBD that occurs through dysregulated interactions between osteoclasts and osteoblasts. Systemic inflammation has been postulated to contribute to bone loss, but the specific pathologic mechanisms have not yet been fully elucidated. We hypothesized that intestinal inflammation leads to bone loss through increased abundance and altered function of osteoclast progenitors. METHODS: We used chemical, T cell driven, and infectious models of intestinal inflammation to determine the impact of intestinal inflammation on bone volume, the skeletal cytokine environment, and the cellular changes to pre-osteoclast populations within bone marrow. Additionally, we evaluated the potential for monoclonal antibody treatment against an inflammation-induced osteoclast co-receptor, myeloid DNAX activation protein 12-associating lectin-1 (MDL-1) to reduce bone loss during colitis. RESULTS: We observed significant bone loss across all models of intestinal inflammation. Bone loss was associated with an increase in pro-osteoclastogenic cytokines within the bone and an expansion of a specific Cd11b-/loLy6Chi osteoclast precursor (OCP) population. Intestinal inflammation led to altered OCP expression of surface receptors involved in osteoclast differentiation and function, including the pro-osteoclastogenic co-receptor MDL-1. OCPs isolated from mice with intestinal inflammation demonstrated enhanced osteoclast differentiation ex vivo compared to controls, which was abrogated by anti-MDL-1 antibody treatment. Importantly, in vivo anti-MDL-1 antibody treatment ameliorated bone loss during intestinal inflammation. CONCLUSIONS: Collectively, these data implicate the pathologic expansion and altered function of OCPs expressing MDL-1 in bone loss during IBD.


Assuntos
Reabsorção Óssea , Doenças Inflamatórias Intestinais , Lectinas Tipo C , Osteoclastos , Osteogênese , Receptores de Superfície Celular , Animais , Anticorpos Monoclonais/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Intestinos/metabolismo , Lectinas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Osteogênese/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
6.
Bone ; 113: 77-88, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753718

RESUMO

The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor ß (TGF-ß), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-ß inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-ß will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-ß neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-ßRII) (TGF-ßRIIMyeKO) was utilized in our studies. Systemic inhibition of TGF-ß lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-ß inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-ßRIIMyeKO mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-ß inhibition regulates myeloid expansion leading to a significant reduction in TIBD.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/secundário , Células Progenitoras Mieloides/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout
7.
Nat Cell Biol ; 18(10): 1078-1089, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27642788

RESUMO

Breast cancer cells frequently home to the bone marrow, where they may enter a dormant state before forming a bone metastasis. Several members of the interleukin-6 (IL-6) cytokine family are implicated in breast cancer bone colonization, but the role for the IL-6 cytokine leukaemia inhibitory factor (LIF) in this process is unknown. We tested the hypothesis that LIF provides a pro-dormancy signal to breast cancer cells in the bone. In breast cancer patients, LIF receptor (LIFR) levels are lower with bone metastases and are significantly and inversely correlated with patient outcome and hypoxia gene activity. Hypoxia also reduces the LIFR:STAT3:SOCS3 signalling pathway in breast cancer cells. Loss of the LIFR or STAT3 enables otherwise dormant breast cancer cells to downregulate dormancy-, quiescence- and cancer stem cell-associated genes, and to proliferate in and specifically colonize the bone, suggesting that LIFR:STAT3 signalling confers a dormancy phenotype in breast cancer cells disseminated to bone.

9.
Oncoimmunology ; 1(9): 1484-1494, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264895

RESUMO

Myeloid-derived suppressor cells (MDSCs), identified as Gr1(+)CD11b(+) cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1(+)CD11b(+) cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn't induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1(+)CD11b(+) cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor ß expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP(+)TRAP(+) cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA