Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 19(4): e1010710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068109

RESUMO

Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in ß-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS ß-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS ß-cells. Consistent with reduced ER chaperones levels, PWS INS-1 ß-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS ß-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic ß-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and ß-cell secretory pathway function.


Assuntos
Síndrome de Prader-Willi , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Secreção de Insulina/genética , Chaperona BiP do Retículo Endoplasmático , Regulação para Baixo , Proteômica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Insulina/genética , Insulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463005

RESUMO

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Deficiência Intelectual Ligada ao Cromossomo X , Poliaminas , Espermina Sintase , Animais , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Espermina Sintase/metabolismo , Espermina Sintase/genética , Poliaminas/metabolismo , Mitocôndrias/metabolismo , Masculino , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fosforilação Oxidativa , Hipocampo/patologia , Hipocampo/metabolismo , Ansiedade/patologia , Densidade Óssea , Encéfalo/patologia , Encéfalo/metabolismo , Medo , Humanos , Tamanho do Órgão
3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945402

RESUMO

Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-ß (TGF-ß) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with SadCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF-ß2, and ACTA2, which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.

4.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711956

RESUMO

Polyamines (putrescine, spermidine, and spermine) are essential molecules for normal cellular functions and are subject to strict metabolic regulation. Mutations in the gene encoding spermine synthase (SMS) lead to accumulation of spermidine in an X-linked recessive disorder known as Snyder-Robinson syndrome (SRS). Presently, no treatments exist for this rare disease that manifests with a spectrum of symptoms including intellectual disability, developmental delay, thin habitus, and low muscle tone. The development of therapeutic interventions for SRS will require a suitable disease-specific animal model that recapitulates many of the abnormalities observed in patients. Here, we characterize the molecular, behavioral, and neuroanatomical features of a mouse model with a missense mutation in Sms gene that results in a glycine-to-serine substitution at position 56 (G56S) of the SMS protein. Mice harboring this mutation exhibit a complete loss of SMS protein and elevated spermidine/spermine ratio in skeletal muscles and the brain. In addition, the G56S mice demonstrate increased anxiety, impaired learning, and decreased explorative behavior in fear conditioning, Morris water maze, and open field tests, respectively. Furthermore, these mice failed to gain weight over time and exhibit abnormalities in brain structure and bone density. Transcriptomic analysis of the cerebral cortex revealed downregulation of genes associated with mitochondrial oxidative phosphorylation and ribosomal protein synthesis. Our findings also revealed impaired mitochondrial bioenergetics in fibroblasts isolated from the G56S mice, indicating a correlation between these processes in the affected mice. Collectively, our findings establish the first in-depth characterization of an SRS preclinical mouse model that identifies cellular processes that could be targeted for future therapeutic development.

5.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055427

RESUMO

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.


Assuntos
Fígado/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina/genética , Fenilcetonúrias/genética , Adolescente , Adulto , Animais , Sistemas CRISPR-Cas/genética , Dieta , Modelos Animais de Doenças , Edição de Genes , Humanos , Fígado/efeitos dos fármacos , Fenótipo , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Suínos
6.
Plant Physiol ; 133(2): 736-47, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12972658

RESUMO

In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil.


Assuntos
Agrobacterium tumefaciens/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Zea mays/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Teste de Complementação Genética , Luz , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Protoporfirinogênio Oxidase , Seleção Genética , Transformação Genética/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA