Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
2.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161960

RESUMO

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Assuntos
Evolução Molecular , Cariótipo , Mamíferos , Sintenia , Animais , Bovinos/genética , Cromossomos de Mamíferos/genética , Eutérios/genética , Humanos , Mamíferos/genética , Filogenia , Bichos-Preguiça/genética , Sintenia/genética
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042802

RESUMO

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
4.
Heredity (Edinb) ; 131(1): 56-67, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37193854

RESUMO

The common myna (Acridotheres tristis) is one of the most invasive bird species in the world, yet its colonisation history is only partly understood. We identified the introduction history and population structure, and quantified the genetic diversity of myna populations from the native range in India and introduced populations in New Zealand, Australia, Fiji, Hawaii, and South Africa, based on thousands of single nucleotide polymorphism markers in 814 individuals. We were able to identify the source population of mynas in several invasive locations: mynas from Fiji and Melbourne, Australia, were likely founded by individuals from a subpopulation in Maharashtra, India, while mynas in Hawaii and South Africa were likely independently founded by individuals from other localities in India. Our findings suggest that New Zealand mynas were founded by individuals from Melbourne, which, in turn, were founded by individuals from Maharashtra. We identified two genetic clusters among New Zealand mynas, divided by New Zealand's North Island's axial mountain ranges, confirming previous observations that mountains and thick forests may form barriers to myna dispersal. Our study provides a foundation for other population and invasion genomic studies and provides useful information for the management of this invasive species.


Assuntos
Espécies Introduzidas , Estorninhos , Metagenômica , Animais , Estorninhos/genética , Variação Genética
5.
Mol Ecol ; 31(11): 3035-3055, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344635

RESUMO

Climatic and evolutionary processes are inextricably linked to conservation. Avoiding extinction in rapidly changing environments often depends upon a species' capacity to adapt in the face of extreme selective pressures. Here, we employed exon capture and high-throughput next-generation sequencing to investigate the mechanisms underlying population structure and adaptive genetic variation in the koala (Phascolarctos cinereus), an iconic Australian marsupial that represents a unique conservation challenge because it is not uniformly threatened across its range. An examination of 250 specimens representing 91 wild source locations revealed that five major genetic clusters currently exist on a continental scale. The initial divergence of these clusters appears to have been concordant with the Mid-Brunhes Transition (~430 to 300 kya), a major climatic reorganisation that increased the amplitude of Pleistocene glacial-interglacial cycles. While signatures of polygenic selection and environmental adaptation were detected, strong evidence for repeated, climate-associated range contractions and demographic bottleneck events suggests that geographically isolated refugia may have played a more significant role in the survival of the koala through the Pleistocene glaciation than in situ adaptation. Consequently, the conservation of genome-wide genetic variation must be aligned with the protection of core koala habitat to increase the resilience of vulnerable populations to accelerating anthropogenic threats. Finally, we propose that the five major genetic clusters identified in this study should be accounted for in future koala conservation efforts (e.g., guiding translocations), as existing management divisions in the states of Queensland and New South Wales do not reflect historic or contemporary population structure.


Assuntos
Phascolarctidae , Animais , Austrália , Evolução Biológica , Ecossistema , Variação Genética/genética , Genômica , Phascolarctidae/genética
6.
Phys Chem Chem Phys ; 24(29): 17449-17461, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35713004

RESUMO

For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18O-carbon monoxide (C18O, X1Σ+) to D2-acetylene (C2D2) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2-18O-cyclopropenone (c-C3D218O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical-radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules.

7.
Proc Biol Sci ; 288(1945): 20202244, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622136

RESUMO

X chromosome inactivation (XCI) mediated by differential DNA methylation between sexes is an iconic example of epigenetic regulation. Although XCI is shared between eutherians and marsupials, the role of DNA methylation in marsupial XCI remains contested. Here, we examine genome-wide signatures of DNA methylation across fives tissues from a male and female koala (Phascolarctos cinereus), and present the first whole-genome, multi-tissue marsupial 'methylome atlas'. Using these novel data, we elucidate divergent versus common features of representative marsupial and eutherian DNA methylation. First, tissue-specific differential DNA methylation in koalas primarily occurs in gene bodies. Second, females show significant global reduction (hypomethylation) of X chromosome DNA methylation compared to males. We show that this pattern is also observed in eutherians. Third, on average, promoter DNA methylation shows little difference between male and female koala X chromosomes, a pattern distinct from that of eutherians. Fourth, the sex-specific DNA methylation landscape upstream of Rsx, the primary lncRNA associated with marsupial XCI, is consistent with the epigenetic regulation of female-specific (and presumably inactive X chromosome-specific) expression. Finally, we use the prominent female X chromosome hypomethylation and classify 98 previously unplaced scaffolds as X-linked, contributing an additional 14.6 Mb (21.5%) to genomic data annotated as the koala X chromosome. Our work demonstrates evolutionarily divergent pathways leading to functionally conserved patterns of XCI in two deep branches of mammals.


Assuntos
Phascolarctidae , Animais , Metilação de DNA , Epigênese Genética , Epigenoma , Feminino , Masculino , Phascolarctidae/genética , Cromossomo X/genética
8.
Nature ; 584(7821): 351-352, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760036
9.
Proc Natl Acad Sci U S A ; 115(34): 8609-8614, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082403

RESUMO

Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.


Assuntos
Retrovirus Endógenos/genética , Phascolarctidae/genética , Recombinação Genética , Animais , Feminino , Masculino , New South Wales
10.
Heredity (Edinb) ; 125(3): 167, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32694588

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Heredity (Edinb) ; 125(3): 85-100, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32398870

RESUMO

Advances in sequencing technologies have revolutionized wildlife conservation genetics. Analysis of genomic data sets can provide high-resolution estimates of genetic structure, genetic diversity, gene flow, and evolutionary history. These data can be used to characterize conservation units and to effectively manage the genetic health of species in a broad evolutionary context. Here we utilize thousands of genome-wide single-nucleotide polymorphisms (SNPs) and mitochondrial DNA to provide the first genetic assessment of the Australian red-tailed black-cockatoo (Calyptorhynchus banksii), a widespread bird species comprising populations of varying conservation concern. We identified five evolutionarily significant units, which are estimated to have diverged during the Pleistocene. These units are only partially congruent with the existing morphology-based subspecies taxonomy. Genetic clusters inferred from mitochondrial DNA differed from those based on SNPs and were less resolved. Our study has a range of conservation and taxonomic implications for this species. In particular, we provide advice on the potential genetic rescue of the Endangered and restricted-range subspecies C. b. graptogyne, and propose that the western C. b. samueli population is diagnosable as a separate subspecies. The results of our study highlight the utility of considering the phylogeographic relationships inferred from genome-wide SNPs when characterizing conservation units and management priorities, which is particularly relevant as genomic data sets become increasingly accessible.


Assuntos
Cacatuas , Genética Populacional , Filogeografia , Animais , Austrália , Cacatuas/genética , Conservação dos Recursos Naturais , DNA Mitocondrial , Espécies em Perigo de Extinção , Variação Genética , Filogenia , Polimorfismo de Nucleotídeo Único
12.
Syst Biol ; 67(3): 400-412, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029231

RESUMO

A fundamental challenge in resolving evolutionary relationships across the tree of life is to account for heterogeneity in the evolutionary signal across loci. Studies of marsupial mammals have demonstrated that this heterogeneity can be substantial, leaving considerable uncertainty in the evolutionary timescale and relationships within the group. Using simulations and a new phylogenomic data set comprising nucleotide sequences of 1550 loci from 18 of the 22 extant marsupial families, we demonstrate the power of a method for identifying clusters of loci that support different phylogenetic trees. We find two distinct clusters of loci, each providing an estimate of the species tree that matches previously proposed resolutions of the marsupial phylogeny. We also identify a well-supported placement for the enigmatic marsupial moles (Notoryctes) that contradicts previous molecular estimates but is consistent with morphological evidence. The pattern of gene-tree variation across tree-space is characterized by changes in information content, GC content, substitution-model adequacy, and signatures of purifying selection in the data. In a simulation study, we show that incomplete lineage sorting can explain the division of loci into the two tree-topology clusters, as found in our phylogenomic analysis of marsupials. We also demonstrate the potential benefits of minimizing uncertainty from phylogenetic conflict for molecular dating. Our analyses reveal that Australasian marsupials appeared in the early Paleocene, whereas the diversification of present-day families occurred primarily during the late Eocene and early Oligocene. Our methods provide an intuitive framework for improving the accuracy and precision of phylogenetic inference and molecular dating using genome-scale data.


Assuntos
Genômica , Marsupiais/classificação , Modelos Genéticos , Filogenia , Animais , Simulação por Computador , Marsupiais/genética
13.
Mol Phylogenet Evol ; 127: 589-599, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29807156

RESUMO

Amongst the Australasian kangaroos and wallabies (Macropodidae) one anomalous genus, the tree-kangaroos, Dendrolagus, has secondarily returned to arboreality. Modern tree-kangaroos are confined to the wet tropical forests of north Queensland, Australia (2 species) and New Guinea (8 species). Due to their behavior, distribution and habitat most species are poorly known and our understanding of the evolutionary history and systematics of the genus is limited and controversial. We obtained tissue samples from 36 individual Dendrolagus including representatives from 14 of the 17 currently recognised or proposed subspecies and generated DNA sequence data from three mitochondrial (3116 bp) and five nuclear (4097 bp) loci. Phylogenetic analysis of these multi-locus data resolved long-standing questions regarding inter-relationships within Dendrolagus. The presence of a paraphyletic ancestral long-footed and derived monophyletic short-footed group was confirmed. Six major lineages were identified: one in Australia (D. lumholtzi, D. bennettianus) and five in New Guinea (D. inustus, D. ursinus, a Goodfellow's group, D. mbaiso and a Doria's group). Two major episodes of diversification within Dendrolagus were identified: the first during the late Miocene/early Pliocene associated with orogenic processes in New Guinea and the second mostly during the early Pleistocene associated with the intensification of climatic cycling. All sampled subspecies showed high levels of genetic divergence and currently recognized species within both the Doria's and Goodfellow's groups were paraphyletic indicating that adjustments to current taxonomy are warranted.


Assuntos
Macropodidae/classificação , Animais , Biodiversidade , Evolução Biológica , Macropodidae/genética , Nova Guiné , Filogenia , Análise de Sequência de DNA
14.
BMC Genomics ; 15: 786, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25214207

RESUMO

BACKGROUND: The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. RESULTS: RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene.Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. CONCLUSIONS: This transcriptomic dataset is a useful resource for molecular genetic studies of the koala, for evolutionary genetic studies of marsupials, for validation and annotation of the koala genome sequence, and for investigation of koala retrovirus. Annotated transcripts can be browsed and queried at http://koalagenome.org.


Assuntos
Perfilação da Expressão Gênica , Variação Genética , Phascolarctidae/genética , Phascolarctidae/virologia , Retroviridae/genética , Retroviridae/fisiologia , Transcrição Gênica , Animais , Sequência de Bases , Evolução Molecular , Feminino , Duplicação Gênica/genética , Genômica , Masculino , Anotação de Sequência Molecular , Splicing de RNA/genética , Análise de Sequência de RNA , Proteínas Virais/genética
15.
Conserv Biol ; 28(2): 572-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24283832

RESUMO

The taxonomic uniqueness of island populations is often uncertain which hinders effective prioritization for conservation. The Christmas Island shrew (Crocidura attenuata trichura) is the only member of the highly speciose eutherian family Soricidae recorded from Australia. It is currently classified as a subspecies of the Asian gray or long-tailed shrew (C. attenuata), although it was originally described as a subspecies of the southeast Asian white-toothed shrew (C. fuliginosa). The Christmas Island shrew is currently listed as endangered and has not been recorded in the wild since 1984-1985, when 2 specimens were collected after an 80-year absence. We aimed to obtain DNA sequence data for cytochrome b (cytb) from Christmas Island shrew museum specimens to determine their taxonomic affinities and to confirm the identity of the 1980s specimens. The Cytb sequences from 5, 1898 specimens and a 1985 specimen were identical. In addition, the Christmas Island shrew cytb sequence was divergent at the species level from all available Crocidura cytb sequences. Rather than a population of a widespread species, current evidence suggests the Christmas Island shrew is a critically endangered endemic species, C. trichura, and a high priority for conservation. As the decisions typically required to save declining species can be delayed or deferred if the taxonomic status of the population in question is uncertain, it is hoped that the history of the Christmas Island shrew will encourage the clarification of taxonomy to be seen as an important first step in initiating informed and effective conservation action.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Musaranhos/classificação , Musaranhos/genética , Animais , Austrália , Citocromos b/genética , Espécies em Perigo de Extinção , Ilhas do Oceano Índico , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
16.
DNA Res ; 31(2)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366840

RESUMO

In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.


Assuntos
Estorninhos , Animais , Espécies Introduzidas , Genoma , Genômica
17.
J Hered ; 103(6): 882-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23125406

RESUMO

Using next-generation sequencing technology, we describe the complete mitochondrial genomes for 5 Australian passerine birds (Epthianura albifrons, Petroica phoenicea, Petroica goodenovii, Petroica boodang, and Eopsaltria australis). We successfully assemble each mitogenome de novo using just 1/8th of a Roche GL FSX 454 pyrosequencing plate. From the assembled mitogenomes, we identify 2 different mitochondrial gene arrangements in the region spanning 5'-3' from Cytochrome B to 12s RNA. These gene arrangements represent 2 of the 4 known avian mitochondrial gene arrangements. Our results, together with other previously described avian mitogenomes, highlight that certain mitochondrial rearrangements appear to have arisen multiple times.


Assuntos
Ordem dos Genes , Genoma Mitocondrial , Aves Canoras/genética , Adenosina Trifosfatases/genética , Animais , Citocromos b/genética , Dados de Sequência Molecular , RNA Ribossômico , RNA Ribossômico 16S , RNA de Transferência , Análise de Sequência de DNA/métodos
19.
Forensic Sci Med Pathol ; 6(3): 211-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20640536

RESUMO

The use of genetic identification techniques in wildlife forensic investigations has increased significantly in recent years. The utilization of DNA is especially important when species identification using other methods are inconclusive. Australia has strict laws against illegal importation of wildlife as well as laws to protect its unique biodiversity from pests and diseases of quarantine concern. Two separate case studies in which genetic identification was essential for species identification are presented-the first involved illegally held shark fins, the second illegally imported live bird eggs. In the latter case genetic identification enabled charges to be laid for illegal importation of CITES Appendix I species. Australian laws allow for some of the highest penalties for illegal trade of wildlife compared to other countries, however only a fraction of cases are prosecuted and penalties applied to date have been lower than the maximum permitted. Both of the reported cases resulted in fines, and one in imprisonment of the offender, which provides a persuasive precedent for future prosecutions.


Assuntos
Cacatuas/genética , Conservação dos Recursos Naturais/legislação & jurisprudência , Crime/legislação & jurisprudência , Impressões Digitais de DNA/métodos , Papagaios/genética , Tubarões/genética , Animais , Austrália , Comércio/legislação & jurisprudência , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie
20.
Mol Phylogenet Evol ; 51(2): 349-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19233300

RESUMO

A species flock of the freshwater isopod genus Eophreatoicus Nicholls lives in seeps, springs and perched aquifers at the base of the Arnhem Plateau and associated sandstone outliers in Australia's Northern Territory. These species have been found to have surprisingly high levels of genetic divergence and narrow range endemism, despite potential opportunities for dispersion during the summer monsoon season when streams flow continuously and have connectivity. Species of Eophreatoicus were identified morphologically as distinct taxa, sometimes with two or three species occurring at the same site. DNA sequence data from the mitochondrial 16S rRNA and cytochrome c oxidase subunit I genes corroborate our morphological concepts to a high level of resolution, with the exception of two distinct species that are identical genetically. The value of mtDNA data for identification of these species, therefore, is limited. These isopods disperse downstream from their home springs to a limited extent during the wet season, but the genetic data show that migration to non-natal springs, and reproduction there, may be rare. We argue that the multiplication of the narrow-range endemic species is the result of their homing behaviour combined with monsoonal alternation between aridity and flooding over recent and geological time scales since the Miocene period.


Assuntos
Evolução Molecular , Especiação Genética , Isópodes/genética , Filogenia , Animais , Composição de Bases , DNA Mitocondrial/genética , Ecossistema , Inundações , Marcadores Genéticos , Isópodes/classificação , Northern Territory , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA