Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS Biol ; 21(9): e3002303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733664

RESUMO

Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.


Assuntos
Aracnodactilia , Optogenética , Nicotiana/genética , Escherichia coli/genética , Expressão Gênica
2.
Plant Physiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669227

RESUMO

Arthropod herbivory poses a serious threat to crop yield, prompting plants to employ intricate defense mechanisms against pest feeding. The generalist pest two-spotted spider mite (Tetranychus urticae) inflicts rapid damage and remains challenging due to its broad target range. In this study, we explored the Arabidopsis (Arabidopsis thaliana) response to T. urticae infestation, revealing the induction of abscisic acid (ABA), a hormone typically associated with abiotic stress adaptation, and stomatal closure during water stress. Leveraging a FRET-based ABA biosensor (nlsABACUS2-400n), we observed elevated ABA levels in various leaf cell types post-mite feeding. While ABA's role in pest resistance or susceptibility has been debated, an ABA-deficient mutant exhibited increased mite infestation alongside intact canonical biotic stress signaling, indicating an independent function of ABA in mite defense. We established that ABA-triggered stomatal closure effectively hinders mite feeding and minimizes leaf cell damage through genetic and pharmacological interventions targeting ABA levels, ABA signaling, stomatal aperture, and density. This study underscores the critical interplay between biotic and abiotic stresses in plants, highlighting how the vulnerability to mite infestation arising from open stomata, crucial for transpiration and photosynthesis, reinforces the intricate relationship between these stress types.

3.
New Phytol ; 241(6): 2448-2463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308183

RESUMO

The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602804

RESUMO

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transdução de Sinais
5.
Plant Physiol ; 188(4): 2012-2025, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148416

RESUMO

Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix-loop-helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses. We show that CES/BEEs can induce the expression of the class III GA 2-oxidase GA2ox7 and that this activity is increased by BRs. In BR signaling - and CES/BEE-deficient mutants, GA2ox7 expression decreased, yielding reduced levels of GA110, a product of GA2ox7 activity. In plants that over-express CES, GA2ox7 expression is hyper-responsive to BR, GA110 levels are elevated and amounts of bioactive GA are reduced. We provide evidence that CES directly binds to the GA2ox7 promoter and is activated by BRs, but can also act by BR-independent means. Based on these results, we propose a model for CES activity in GA catabolism where CES can be recruited for GA2ox7 induction not only by BR, but also by other factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
6.
Plant Physiol ; 187(2): 590-602, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35237816

RESUMO

Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Engenharia Genética , Células Vegetais , Plantas/genética
7.
Genome Res ; 27(7): 1207-1219, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28611159

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.


Assuntos
Criptococose/genética , Cryptococcus neoformans , Evolução Molecular , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética , África Subsaariana/epidemiologia , Criptococose/mortalidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos
8.
J Exp Bot ; 70(22): 6549-6559, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597061

RESUMO

Plants that use crassulacean acid metabolism (CAM) have the potential to meet growing agricultural resource demands using land that is considered unsuitable for many common crop species. Agave americana L., an obligate CAM plant, has potential as an advanced biofuel crop in water-limited regions, and has greater cold tolerance than other high-yielding CAM species, but physiological tolerances have not been completely resolved. We developed a model to estimate the growth responses of A. americana to water input, temperature, and photosynthetically active radiation (PAR). The photosynthetic response to PAR was determined experimentally by measuring the integrated leaf gas exchange over 24 h after acclimation to six light levels. Maximum CO2 fixation rates were observed at a PAR intensity of 1250 µmol photons m-2 s-1. Growth responses of A. americana to water and temperature were also determined, and a monthly environmental productivity index (EPI) was derived that can be used to predict biomass growth. The EPI was calculated as the product of water, temperature, and light indices estimated for conditions at a site in Maricopa (Arizona), and compared with measured biomass at the same site (where the first field trial of A. americana as a crop was completed). The monthly EPI summed over the lifetime of multi-year crops was highly correlated with the average measured biomass of healthy 2- and 3-year-old plants grown in the field. The resulting relationship between EPI and biomass provides a simple model for estimating the production of A. americana at a monthly time step according to light, temperature, and precipitation inputs, and is a useful tool for projecting the potential geographic range of this obligate CAM species in future climatic conditions.


Assuntos
Agave/crescimento & desenvolvimento , Biocombustíveis , Produtos Agrícolas/crescimento & desenvolvimento , Clima Desértico , Modelos Biológicos , Agave/efeitos da radiação , Biomassa , Produtos Agrícolas/efeitos da radiação , Luz , Temperatura , Água
9.
New Phytol ; 210(1): 38-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26201893

RESUMO

Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time.


Assuntos
Ácido Abscísico/farmacologia , Transferência Ressonante de Energia de Fluorescência , Estresse Fisiológico/efeitos dos fármacos , Ácido Abscísico/biossíntese , Técnicas Biossensoriais , Desidratação
10.
Nat Commun ; 15(1): 3895, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719832

RESUMO

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biossensoriais , Regulação da Expressão Gênica de Plantas , Giberelinas , Meristema , Transdução de Sinais , Giberelinas/metabolismo , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
11.
BMC Biol ; 10: 39, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22554191

RESUMO

Bioluminescent and fluorescent proteins are now used as tools for research in all organisms. There has been massive progress over the past 15 years in creating a palette of fluorescent proteins with a wide spectrum of specific properties. One of the big challenges is to decide which variant may be best for a certain application. A recent article by Mann et al. in BMC Biotechnology describes a new orange fluorescent protein in plants.


Assuntos
Biotecnologia/métodos , Botânica/métodos , Proteínas Luminescentes/química , Fluorescência , Fenômenos Fisiológicos Vegetais , Espectrometria de Fluorescência/métodos
12.
Plant Commun ; 4(2): 100495, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36419364

RESUMO

Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Ácido Abscísico/metabolismo , Plantas/metabolismo
13.
Nat Plants ; 9(7): 1103-1115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365314

RESUMO

The plant hormone abscisic acid (ABA) accumulates under abiotic stress to recast water relations and development. To overcome a lack of high-resolution sensitive reporters, we developed ABACUS2s-next-generation Förster resonance energy transfer (FRET) biosensors for ABA with high affinity, signal-to-noise ratio and orthogonality-that reveal endogenous ABA patterns in Arabidopsis thaliana. We mapped stress-induced ABA dynamics in high resolution to reveal the cellular basis for local and systemic ABA functions. At reduced foliar humidity, root cells accumulated ABA in the elongation zone, the site of phloem-transported ABA unloading. Phloem ABA and root ABA signalling were both essential to maintain root growth at low humidity. ABA coordinates a root response to foliar stresses, enabling plants to maintain foraging of deeper soil for water uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biossensoriais , Ácido Abscísico/farmacologia , Umidade , Reguladores de Crescimento de Plantas , Arabidopsis/metabolismo , Água/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Biochem J ; 438(1): 1-10, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21793803

RESUMO

Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation.


Assuntos
Fenômenos Fisiológicos Celulares , Íons/metabolismo , Metabolômica/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Bioquímica , Transdução de Sinais
15.
Methods Mol Biol ; 2494: 239-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467212

RESUMO

The ABACUS1-2 µ (ABscisic Acid Concentration and Uptake Sensor 1-2 µ) and GPS1 (Gibberellin Perception Sensor 1) are direct Förster resonance energy transfer (FRET) biosensors that can be used to measure hormone levels in planta. We provide detailed protocols to image FRET biosensors under exogenously applied hormones in roots, either as a single time point or for treatment time courses before and after hormone application. A new, free, open-source analysis toolset for Fiji is introduced and used to get full 3D segmentation of images of nuclear localized FRET biosensors and calculate emission ratios on a per nucleus basis allowing in-depth analysis of biosensor data.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Giberelinas , Hormônios , Reguladores de Crescimento de Plantas
16.
Science ; 378(6621): 762-768, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36395221

RESUMO

Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we show that xerobranching is regulated by radial movement of the phloem-derived hormone abscisic acid, which disrupts intercellular communication between inner and outer cell layers through plasmodesmata. Closure of these intercellular pores disrupts the inward movement of the hormone signal auxin, blocking lateral root branching. Once root tips regain contact with moisture, the abscisic acid response rapidly attenuates. Our study reveals how roots adapt their branching pattern to heterogeneous soil water conditions by linking changes in hydraulic flux with dynamic hormone redistribution.


Assuntos
Ácido Abscísico , Ácidos Indolacéticos , Floema , Reguladores de Crescimento de Plantas , Raízes de Plantas , Água , Ácido Abscísico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Solo , Água/metabolismo , Floema/metabolismo , Plasmodesmos/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo
17.
J Bacteriol ; 193(11): 2767-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21441525

RESUMO

High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 µM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 µM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Sideróforos/metabolismo , Ácido Cítrico/metabolismo , Técnicas de Inativação de Genes , Solanum lycopersicum/microbiologia , Oligopeptídeos/metabolismo , Fenóis/metabolismo , Pseudomonas syringae/genética , Sideróforos/genética , Tiazóis/metabolismo , Virulência
18.
Quant Plant Biol ; 2: e12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37077214

RESUMO

In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.

19.
Nat Commun ; 12(1): 5438, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521831

RESUMO

Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.


Assuntos
Proteínas de Arabidopsis/metabolismo , Técnicas Biossensoriais , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Pressão Osmótica , Água/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Concentração Osmolar , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Termodinâmica
20.
Front Plant Sci ; 11: 654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595656

RESUMO

Agave americana L. is a highly productive, drought-tolerant species being investigated as a feedstock for biofuel production. Some Agave spp. yield crop biomass in semi-arid conditions that are comparable to C3 and C4 crops grown in areas with high rainfall. This study evaluates the bioethanol yield potential of A. americana by (1) examining the relationship between water use efficiency (WUE) and plant carbohydrates, (2) quantifying the carbohydrate and energy content of the plant tissue, and (3) comparing the products of enzymatic hydrolysis to that of other candidate feedstocks (Miscanthus x giganteus Greef et Deuter, Sorghum bicolor (L.) Moench, and Panicum virgatum L.). Results indicate that (1) WUE does not significantly affect soluble and insoluble (i.e., structural) carbohydrate composition per unit mass in A. americana; (2) without pretreatment, A. americana biomass had the lowest gross heat of combustion, or higher heating/calorific value, compared to high yielding C4 crops; and (3) after separation of soluble carbohydrates, A. americana cellulosic biomass was most easily hydrolyzed by enzymes with greater sugar yield per unit mass compared to the other biomass feedstocks. These results indicate that A. americana can produce substantial yields of soluble carbohydrates with minimal water inputs required for cultivation, and fiber portions of the crop can be readily deconstructed by cellulolytic enzymes for subsequent biochemical fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA