Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(14): E3106-E3115, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555731

RESUMO

Many microbial pathogens produce a ß-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule, including bacterial, fungal, and protozoan cells. Broadly protective immune responses to this single conserved polysaccharide antigen in animals are possible but only when a deacetylated poly-N-acetyl-d-glucosamine (dPNAG; <30% acetate) glycoform is administered as a conjugate to a carrier protein. Unfortunately, conventional methods for natural extraction or chemical synthesis of dPNAG and its subsequent conjugation to protein carriers can be technically demanding and expensive. Here, we describe an alternative strategy for creating broadly protective vaccine candidates that involved coordinating recombinant poly-N-acetyl-d-glucosamine (rPNAG) biosynthesis with outer membrane vesicle (OMV) formation in laboratory strains of Escherichia coli The glycosylated outer membrane vesicles (glycOMVs) released by these engineered bacteria were decorated with the PNAG glycopolymer and induced high titers of PNAG-specific IgG antibodies after immunization in mice. When a Staphylococcus aureus enzyme responsible for PNAG deacetylation was additionally expressed in these cells, glycOMVs were generated that elicited antibodies to both highly acetylated PNAG (∼95-100% acetate) and a chemically deacetylated dPNAG derivative (∼15% acetate). These antibodies mediated efficient in vitro killing of two distinct PNAG-positive bacterial species, namely S. aureus and Francisella tularensis subsp. holarctica, and mice immunized with PNAG-containing glycOMVs developed protective immunity against these unrelated pathogens. Collectively, our results reveal the potential of glycOMVs for targeting this conserved polysaccharide antigen and engendering protective immunity against the broad range of pathogens that produce surface PNAG.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Superfície/imunologia , Bactérias/imunologia , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/uso terapêutico , Imunização/métodos , Vesículas Transportadoras/imunologia , Animais , Infecções Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , beta-Glucanas/metabolismo
2.
Cell Microbiol ; 20(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29063667

RESUMO

Francisella tularensis infects several cell types including neutrophils, and aberrant neutrophil accumulation contributes to tissue destruction during tularaemia. We demonstrated previously that F. tularensis strains Schu S4 and live vaccine strain markedly delay human neutrophil apoptosis and thereby prolong cell lifespan, but the bacterial factors that mediate this aspect of virulence are undefined. Herein, we demonstrate that bacterial conditioned medium (CM) can delay apoptosis in the absence of direct infection. Biochemical analyses show that CM contained F. tularensis surface factors as well as outer membrane components. Our previous studies excluded roles for lipopolysaccharide and capsule in apoptosis inhibition, and current studies of [14 C] acetate-labelled bacteria argue against a role for other bacterial lipids in this process. At the same time, studies of isogenic mutants indicate that TolC and virulence factors whose expression requires FevR or MglA were also dispensable, demonstrating that apoptosis inhibition does not require Type I or Type VI secretion. Instead, we identified bacterial lipoproteins (BLPs) as active factors in CM. Additional studies of isolated BLPs demonstrated dose-dependent neutrophil apoptosis inhibition via a TLR2-dependent mechanism that is significantly influenced by a common polymorphism, rs5743618, in human TLR1. These data provide fundamental new insight into pathogen manipulation of neutrophil lifespan and BLP function.


Assuntos
Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Francisella tularensis/metabolismo , Lipoproteínas/metabolismo , Neutrófilos/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Receptor 1 Toll-Like/genética , Francisella tularensis/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Tularemia/metabolismo , Tularemia/microbiologia , Virulência/genética , Fatores de Virulência/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(26): E3609-18, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27274048

RESUMO

The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. Here, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Using this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS-specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Vesículas Transportadoras/metabolismo , Tularemia/imunologia , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Francisella tularensis/genética , Francisella tularensis/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/imunologia , Vesículas Transportadoras/genética , Tularemia/microbiologia , Tularemia/prevenção & controle , Vacinação
4.
J Immunol ; 196(10): 4227-36, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27029588

RESUMO

A shift in macrophage metabolism from oxidative phosphorylation to aerobic glycolysis is a requirement for activation to effectively combat invading pathogens. Francisella tularensis is a facultative intracellular bacterium that causes an acute, fatal disease called tularemia. Its primary mechanism of virulence is its ability to evade and suppress inflammatory responses while replicating in the cytosol of macrophages. The means by which F. tularensis modulates macrophage activation are not fully elucidated. In this study, we demonstrate that virulent F. tularensis impairs production of inflammatory cytokines in primary macrophages by preventing their shift to aerobic glycolysis, as evidenced by the downregulation of hypoxia inducible factor 1α and failure to upregulate pfkfb3 We also show that Francisella capsule is required for this process. In addition to modulating inflammatory responses, inhibition of glycolysis in host cells is also required for early replication of virulent Francisella Taken together, our data demonstrate that metabolic reprogramming of host cells by F. tularensis is a key component of both inhibition of host defense mechanisms and replication of the bacterium.


Assuntos
Cápsulas Bacterianas/imunologia , Reprogramação Celular , Francisella tularensis/patogenicidade , Inflamação/imunologia , Macrófagos/imunologia , Animais , Citocinas/imunologia , Regulação para Baixo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/metabolismo , Tularemia/imunologia , Virulência
5.
J Immunol ; 197(7): 2738-47, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543611

RESUMO

T cells are the immunological cornerstone in host defense against infections by intracellular bacterial pathogens, such as virulent Francisella tularensis spp. tularensis (Ftt). The general paucity of novel vaccines for Ftt during the past 60 y can, in part, be attributed to the poor understanding of immune parameters required to survive infection. Thus, we developed a strategy utilizing classical immunological tools to elucidate requirements for effective adaptive immune responses directed against Ftt. Following generation of various Francisella strains expressing well-characterized lymphocytic choriomeningitis virus epitopes, we found that survival correlated with persistence of Ag-specific CD4(+) T cells. Function of these cells was confirmed in their ability to more effectively control Ftt replication in vitro. The importance of understanding the Ag-specific response was underscored by our observation that inclusion of an epitope that elicits high-avidity CD4(+) T cells converted a poorly protective vaccine to one that engenders 100% protection. Taken together, these data suggest that improved efficacy of current tularemia vaccine platforms will require targeting appropriate Ag-specific CD4(+) T cell responses and that elucidation of Francisella epitopes that elicit high-avidity CD4(+) T cell responses, specifically in humans, will be required for successful vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Francisella tularensis/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos
6.
J Immunol ; 193(2): 708-21, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943221

RESUMO

Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.


Assuntos
Engenharia Metabólica/métodos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Linfócitos T/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proliferação de Células , Células Cultivadas , Deleção de Genes , Humanos , Imunização , Ativação Linfocitária/imunologia , Macaca mulatta/imunologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Ácido Mevalônico/metabolismo , Organofosfatos/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Linfócitos T/metabolismo
7.
Infect Immun ; 83(3): 978-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547794

RESUMO

Salmonellae initiate disease through the invasion of host cells within the intestine. This ability to invade requires the coordinated action of numerous genes, many of which are found within Salmonella pathogenicity island 1 (SPI-1). The key to this process is the ability of the bacteria to respond to the environment, thereby upregulating the necessary genes under optimal conditions. Central to the control of SPI-1 is the transcriptional activator hilA. Work has identified at least 10 different activators and 8 different repressors responsible for the control of hilA. We have previously shown that hilE is a Salmonella-specific negative regulator that is able to repress hilA expression and invasion. Additionally, fimZ, a transcriptional activator responsible for the expression of type I fimbriae as well as flagellar genes, has also been implicated in this process. fimZ is homologous to response regulators from other two-component regulatory systems, although a sensor for the system has not been identified. The phoPQ and phoBR regulons are both two-component systems that negatively affect hilA expression, although the mechanism of action has not been determined. Our results show that PhoBR is capable of inducing fimZ expression, whereas PhoPQ does not affect fimZ expression but does upregulate hilE in an FimZ-dependent manner. Therefore, phosphate (sensed by PhoBR) and magnesium (sensed by PhoPQ) levels are important in controlling hilA expression levels when Salmonella is in the intestinal environment.


Assuntos
Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Proteínas Repressoras/genética , Salmonella typhimurium/genética , Transativadores/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Ilhas Genômicas , Magnésio/metabolismo , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Transativadores/metabolismo , Transcrição Gênica
8.
Infect Immun ; 82(4): 1523-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452684

RESUMO

The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.


Assuntos
Francisella tularensis/patogenicidade , Antígenos O/genética , Tularemia/microbiologia , Sequência de Aminoácidos , Animais , Cápsulas Bacterianas/fisiologia , Modelos Animais de Doenças , Feminino , Francisella tularensis/genética , Francisella tularensis/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Antígenos O/química , Antígenos O/imunologia , Análise de Sequência de DNA , Tularemia/genética , Tularemia/imunologia , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
9.
Infect Immun ; 81(3): 850-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275090

RESUMO

Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp. tularensis strain Schu S4 mutants that lack functional iglI, iglJ, or pdpC, three genes of the Francisella pathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. The iglI and iglJ mutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, the pdpC mutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed by trans complementation. In vivo virulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 10(8) CFU iglJ- or pdpC-deficient bacteria. Nevertheless, the pdpC mutant disseminated to the liver and spleen before being eliminated, whereas the iglJ mutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential for F. tularensis Schu S4 virulence and further suggest that pdpC may play a unique role in this process, as indicated by its distinct intermediate phenotype.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Macrófagos/microbiologia , Tularemia/microbiologia , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tularemia/patologia , Virulência
10.
Infect Immun ; 81(1): 201-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115038

RESUMO

Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1ß (IL-1ß) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1ß and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1ß and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo.


Assuntos
Vacinas Bacterianas/imunologia , Caspase 1/metabolismo , Ácido Fólico/metabolismo , Francisella tularensis/imunologia , Transferases Intramoleculares/metabolismo , Animais , Vacinas Bacterianas/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/imunologia , Carbono-Nitrogênio Ligases/metabolismo , Caspase 1/imunologia , Ácido Fólico/genética , Ácido Fólico/imunologia , Francisella tularensis/genética , Francisella tularensis/metabolismo , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/imunologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Mutação/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Tularemia/genética , Tularemia/imunologia , Tularemia/metabolismo , Tularemia/microbiologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/metabolismo , Virulência/imunologia
11.
Infect Immun ; 81(8): 2800-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716606

RESUMO

The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression. Recent data demonstrated that the small alarmone ppGpp, produced by RelA and SpoT, is important for stabilizing MglA/SspA and FevR (PigR) interactions in Francisella. Production of ppGpp is commonly known to be activated by cellular and nutritional stress in bacteria, which indicates that cellular and nutritional stresses act as important signals for FPI activation. In this work, we demonstrate that mutations in migR, trmE, or cphA significantly reduce ppGpp accumulation. The reduction in ppGpp levels was similar for each of the mutants and correlated with a corresponding reduction in iglA reporter expression. In addition, we observed that there were differences in the ability of each of these mutants to replicate within various mammalian cells, indicating that the migR, trmE, and cphA genes are likely parts of different cellular stress response pathways in Francisella. These results also indicate that different nutritional and cellular stresses exist in different mammalian cells. This work provides new information to help understand how Francisella regulates its virulence genes in response to host cell environments, and it contributes to our growing knowledge of this highly successful bacterial pathogen.


Assuntos
Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Pirofosfatases/biossíntese , Tularemia/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Feminino , Imunofluorescência , Francisella tularensis/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Fisiológico/fisiologia , Tularemia/metabolismo , Virulência/genética
12.
J Immunol ; 185(5): 2670-4, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20679532

RESUMO

The mechanisms by which the intracellular pathogen Francisella tularensis evades innate immunity are not well defined. We have identified a gene with homology to Escherichia coli mviN, a putative lipid II flippase, which F. tularensis uses to evade activation of innate immune pathways. Infection of mice with a F. tularensis mviN mutant resulted in improved survival and decreased bacterial burdens compared to infection with wild-type F. tularensis. The mviN mutant also induced increased absent in melanoma 2 inflammasome-dependent IL-1beta secretion and cytotoxicity in macrophages. The compromised in vivo virulence of the mviN mutant depended upon inflammasome activation, as caspase 1- and apoptosis-associated speck-like protein containing a caspase recruitment domain-deficient mice did not exhibit preferential survival following infection. This study demonstrates that mviN limits F. tularensis-induced absent in melanoma 2 inflammasome activation, which is critical for its virulence in vivo.


Assuntos
Proteínas de Bactérias/genética , Regulação para Baixo/imunologia , Francisella tularensis/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Mutação , Proteínas Nucleares/metabolismo , Regulação para Cima/imunologia , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/fisiologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Francisella tularensis/imunologia , Francisella tularensis/patogenicidade , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Ativação de Macrófagos/genética , Macrófagos/microbiologia , Macrófagos/patologia , Melanoma/imunologia , Camundongos , Camundongos Knockout , Mutação/genética , Mutação/imunologia , Regulação para Cima/genética , Virulência/genética , Virulência/imunologia , Fatores de Virulência/fisiologia
13.
Infect Immun ; 79(2): 581-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078861

RESUMO

Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.


Assuntos
Cápsulas Bacterianas/biossíntese , Francisella tularensis/metabolismo , Macrófagos/microbiologia , Antígenos O/metabolismo , Cápsulas Bacterianas/genética , Morte Celular , Células Cultivadas , Francisella tularensis/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Genoma Bacteriano , Humanos , Macrófagos/citologia , Mutação , Antígenos O/genética , Óperon
14.
Microbiol Spectr ; 9(3): e0175221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756087

RESUMO

Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis, although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy.


Assuntos
Aderência Bacteriana/fisiologia , Endocardite/patologia , Fímbrias Bacterianas/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus sanguis/patogenicidade , Animais , Plaquetas/microbiologia , Modelos Animais de Doenças , Endocardite/microbiologia , Endocardite/veterinária , Células Endoteliais/microbiologia , Fímbrias Bacterianas/classificação , Fímbrias Bacterianas/genética , Valvas Cardíacas/microbiologia , Humanos , Locomoção/fisiologia , Agregação Plaquetária/fisiologia , Coelhos , Infecções Estreptocócicas/patologia , Streptococcus sanguis/genética , Streptococcus sanguis/crescimento & desenvolvimento , Fatores de Virulência/metabolismo
15.
ACS Appl Bio Mater ; 4(2): 1283-1293, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014480

RESUMO

Due to its attractive mechanical properties and biocompatibility, poly(dimethyl)siloxane (PDMS) is widely used in the fabrication of biomedical materials. On the other hand, PDMS is also prone to adsorption of both proteins and bacteria, making PDMS implants susceptible to infection. Herein, we examine the use of durably cross-linked zwitterionic coatings for PDMS surfaces to mitigate bacterial adhesion. Using a single-step photografting technique, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) thin films were covalently attached to PDMS substrates. The abilities of these coatings to resist the adhesion of Staphylococcus aureus and Staphylococcus epidermidis were tested in vitro under both wet and droplet conditions, as well as in subcutaneous and transcutaneous implantation models using Sprague-Dawley rats. Zwitterionic thin films effectively reduced bacterial adhesion in both in vitro and in vivo conditions. This was particularly true for pCBMA-coated materials, which exhibited significant reduction in bacterial adhesion and growth with respect to S. aureus and S. epidermidis for all in vitro conditions as well as the ability to resist bacterial growth on PDMS implants. The results of this study suggest that a simple and durable photografting process can be used to produce polymer thin films capable of preventing infection of implantable medical devices.


Assuntos
Aderência Bacteriana , Dimetilpolisiloxanos/química , Processos Fotoquímicos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia , Animais , Materiais Biocompatíveis , Biofilmes , Incrustação Biológica , Implantes Experimentais , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
16.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536221

RESUMO

Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.

17.
Front Microbiol ; 11: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082276

RESUMO

Streptococcus sanguinis (S. sanguinis) is an abundant oral commensal which can cause disseminated human infection if it gains access to the bloodstream. The most important among these diseases is infective endocarditis (IE). While virulence phenotypes of S. sanguinis have been correlated to disease severity, genetic factors mediating these phenotypes, and contributing to pathogenesis are largely uncharacterized. In this report, we investigate the roles of 128 genes in virulence-related phenotypes of S. sanguinis and characterize the pathogenic potential of two selected mutants in a left-sided, native valve IE rabbit model. Assays determining the ability of our mutant strains to produce a biofilm, bind to and aggregate platelets, and adhere to or invade endothelial cells identified sixteen genes with novel association to these phenotypes. These results suggest the presence of many uncharacterized genes involved in IE pathogenesis which may be relevant for disease progression. Two mutants identified by the above screening process - SSA_1099, encoding an RTX-like protein, and mur2, encoding a peptidoglycan hydrolase - were subsequently evaluated in vivo. Wild type (WT) S. sanguinis reliably induced cardiac vegetations, while the SSA_1099 and mur2 mutants produced either no vegetation or vegetations of small size. Splenomegaly was reduced in both mutant strains compared to WT, while pathology of other distal organs was indistinguishable. Histopathology analyses suggest the cardiac lesions and vegetations in this model resemble those observed in humans. These data indicate that SSA_1099 and mur2 encode virulence factors in S. sanguinis which are integral to pathogenesis of IE.

18.
Infect Immun ; 77(4): 1324-36, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19204089

RESUMO

Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. We have shown that F. tularensis subspecies holarctica strain LVS prevents NADPH oxidase assembly and activation in human neutrophils, but how this is achieved is unclear. Herein, we used random transposon mutagenesis to identify LVS genes that affect neutrophil activation. Our initial screen identified carA, carB, and pyrB, which encode the small and large subunits of carbamoylphosphate synthase and aspartate carbamoyl transferase, respectively. These strains are uracil auxotrophs, and their growth was attenuated on cysteine heart agar augmented with sheep blood (CHAB) or in modified Mueller-Hinton broth. Phagocytosis of the uracil auxotrophic mutants triggered a respiratory burst in neutrophils, and ingested bacteria were killed and fragmented in phagosomes that contained superoxide. Conversely, phagocytosis did not trigger a respiratory burst in blood monocytes or monocyte-derived macrophages (MDM), and phagosomes containing wild-type or mutant bacteria lacked NADPH oxidase subunits. Nevertheless, the viability of mutant bacteria declined in MDM, and ultrastructural analysis revealed that phagosome egress was significantly inhibited despite synthesis of the virulence factor IglC. Other aspects of infection, such as interleukin-1beta (IL-1beta) and IL-8 secretion, were unaffected. The cultivation of carA, carB, or pyrB on uracil-supplemented CHAB was sufficient to prevent neutrophil activation and intramacrophage killing and supported escape from MDM phagosomes, but intracellular growth was not restored unless uracil was added to the tissue culture medium. Finally, all mutants tested grew normally in both HepG2 and J774A.1 cells. Collectively, our data demonstrate that uracil auxotrophy has cell type-specific effects on the fate of Francisella bacteria.


Assuntos
Proteínas de Bactérias/genética , Francisella tularensis/patogenicidade , Macrófagos/microbiologia , Ativação de Neutrófilo/imunologia , Explosão Respiratória/imunologia , Tularemia/imunologia , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Linhagem Celular , Meios de Cultura , Elementos de DNA Transponíveis , Células Epiteliais/microbiologia , Francisella tularensis/classificação , Francisella tularensis/enzimologia , Francisella tularensis/genética , Humanos , Macrófagos/imunologia , Camundongos , Mutagênese Insercional , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Neutrófilos/imunologia , Tularemia/microbiologia , Tularemia/patologia , Uracila/metabolismo
19.
Infect Immun ; 77(6): 2517-29, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19349423

RESUMO

Francisella tularensis, the etiological agent of tularemia, is capable of infecting a wide range of animals and causes a severe, lethal disease in humans. The pathogen evades killing by cells of the innate immune system utilizing genes encoding a pathogenicity island, including iglABCD, and instead utilizes these cells as a niche for replication and dissemination to other organs within the host. Regulators of the igl genes (e.g., MglA, SspA, FevR and PmrA) have been identified, but environmental stimuli and mechanisms of regulation are as yet unknown and are likely to involve additional gene products. In this work, we more closely examine the roles that environmental iron and the ferric uptake repressor protein (Fur) play in the regulation of the iglABCD operon. We also used a genetic approach to identify and characterize a new regulator of the igl operon, designated migR (macrophage intracellular growth regulator; FTL_1542). Quantitative real-time reverse transcription-PCR in a site-directed migR mutant confirmed the reduction in the number of iglC transcripts in this strain and also demonstrated reduced expression of fevR. Comparison of the migR and fevR mutants in monocyte-derived macrophages (MDMs) and epithelial cell lines revealed a reduced ability for each mutant to grow in MDMs, yet only the fevR mutant exhibited impaired replication in epithelial cell lines. Confocal analysis of infected MDMs revealed that although neither mutant reached the MDM cytosol, the fevR mutant was trapped in lamp-1-positive phagosomes, whereas the migR mutant resided in mature phagolysosomes enriched with both lamp-1 and cathepsin D. Disruption of migR and fevR also impaired the ability of F. tularensis to prevent neutrophil oxidant production. Thus, we have identified migR, a gene that regulates expression of the iglABCD operon and is essential for bacterial growth in MDMs and also contributes to the blockade of neutrophil NADPH oxidase activity.


Assuntos
Proteínas de Bactérias/fisiologia , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Macrófagos/imunologia , Macrófagos/microbiologia , Fatores de Virulência/fisiologia , Adulto , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Linhagem Celular , Células Cultivadas , Francisella tularensis/imunologia , Francisella tularensis/fisiologia , Perfilação da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Neutrófilos/imunologia , Neutrófilos/microbiologia , Óperon , Fagossomos/microbiologia , Virulência , Fatores de Virulência/genética , Adulto Jovem
20.
Appl Environ Microbiol ; 74(9): 2637-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18344342

RESUMO

Francisella tularensis is the etiologic agent of an intracellular systemic infection of the lymphatic system in humans called tularemia. The organism has become the subject of considerable research interest due to its classification as a category A select agent by the CDC. To aid genetic analysis of this pathogen, we have constructed a temperature-sensitive Tn5-based transposon delivery system that is capable of generating chromosomal reporter fusions with lacZ or luxCDABE, enabling us to monitor gene expression. Transposition is catalyzed by the hyperactive Tn5 transposase, whose expression is driven by the Francisella groES promoter. When high-temperature selection (42 degrees C) is applied to a bacterial culture carrying the transposon delivery plasmid, approximately 0.1% of the population is recovered with Tn5 insertions in the chromosome. Nucleotide sequence analysis of a sample of mutants revealed that the insertions occur randomly throughout the chromosome. The kanamycin-selectable marker of the transposon is also flanked by FLP recombination target sequences that allow deletion of the antibiotic resistance gene when desired. This system has been used to generate transposon mutant libraries for the F. tularensis live vaccine strain as well as two different virulent F. tularensis strains. Chromosomal reporters delivered with the transposon were used to identify genes upregulated by growth in Chamberlain's defined medium. Genes in the fsl operon, reported to be involved in iron acquisition, as well as genes in the igl gene cluster were among those identified by the screen. Further experiments implicate the ferric uptake regulator (Fur) protein in the negative regulation of fsl but not igl reporters, which occurs in an iron-dependent manner. Our results indicate that we have created a valuable new transposon that can be used to identify and characterize virulence genes in F. tularensis strains.


Assuntos
Elementos de DNA Transponíveis , Francisella tularensis/genética , Mutagênese Insercional/métodos , Fusão Gênica Artificial/métodos , Perfilação da Expressão Gênica , Genes Bacterianos , Temperatura Alta , Resistência a Canamicina/genética , Luciferases/genética , Recombinação Genética , Regulação para Cima , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA