Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Microsc Microanal ; 29(5): 1610-1617, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37490647

RESUMO

Low-voltage scanning electron microscopy is a powerful tool for examining surface features and imaging beam-sensitive materials. Improving resolution during low-voltage imaging is then an important area of development. Decreasing the effect of chromatic aberration is one solution to improving the resolution and can be achieved by reducing the energy spread of the electron source. Our approach involves retrofitting a light source onto a thermionic lanthanum hexaboride (LaB6) electron gun as a cost-effective low energy-spread photoelectron emitter. The energy spread of the emitter's photoelectrons is theorized to be between 0.11 and 0.38 eV, depending on the photon energy of the ultraviolet (UV) light source. Proof-of-principle images have been recorded using this retrofitted photoelectron gun, and an analysis of its performance is presented.

2.
Microsc Microanal ; 29(4): 1373-1379, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488815

RESUMO

Fast frame rates are desirable in scanning transmission electron microscopy for a number of reasons: controlling electron beam dose, capturing in situ events, or reducing the appearance of scan distortions. While several strategies exist for increasing frame rates, many impact image quality or require investment in advanced scan hardware. Here, we present an interlaced imaging approach to achieve minimal loss of image quality with faster frame rates that can be implemented on many existing scan controllers. We further demonstrate that our interlacing approach provides the best possible strain precision for a given electron dose compared with other contemporary approaches.

3.
Microsc Microanal ; 29(4): 1402-1408, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488817

RESUMO

With increasing interest in high-speed imaging, there should be an increased interest in the response times of our scanning transmission electron microscope detectors. Previous works have highlighted and contrasted the performance of various detectors for quantitative compositional or structural studies, but here, we shift the focus to detector temporal response, and the effect this has on captured images. The rise and decay times of eight detectors' single-electron response are reported, as well as measurements of their flatness, roundness, smoothness, and ellipticity. We develop and apply a methodology for incorporating the temporal detector response into simulations, showing that a loss of resolution is apparent in both the images and their Fourier transforms. We conclude that the solid-state detector outperforms the photomultiplier tube-based detectors in all areas bar a slightly less elliptical central hole and is likely the best detector to use for the majority of applications. However, using the tools introduced here, we encourage users to effectively evaluate which detector is most suitable for their experimental needs.

4.
Microsc Microanal ; : 1-7, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35354509

RESUMO

Low-voltage transmission electron microscopy (≤80 kV) has many applications in imaging beam-sensitive samples, such as metallic nanoparticles, which may become damaged at higher voltages. To improve resolution, spherical aberration can be corrected for in a scanning transmission electron microscope (STEM); however, chromatic aberration may then dominate, limiting the ultimate resolution of the microscope. Using image simulations, we examine how a chromatic aberration corrector, different objective lenses, and different beam energy spreads each affect the image quality of a gold nanoparticle imaged at low voltages in a spherical aberration-corrected STEM. A quantitative analysis of the simulated examples can inform the choice of instrumentation for low-voltage imaging. We here demonstrate a methodology whereby the optimum energy spread to operate a specific STEM can be deduced. This methodology can then be adapted to the specific sample and instrument of the reader, enabling them to make an informed economical choice as to what would be most beneficial for their STEM in the cost-conscious landscape of scientific infrastructure.

5.
Microsc Microanal ; 27(1): 99-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33334386

RESUMO

When characterizing beam-sensitive materials in the scanning transmission electron microscope (STEM), low-dose techniques are essential for the reliable observation of samples in their true state. A simple route to minimize both the total electron-dose and the dose-rate is to reduce the electron beam-current and/or raster the probe at higher speeds. At the limit of these settings, and with current detectors, the resulting images suffer from unacceptable artifacts, including signal-streaking, detector-afterglow, and poor signal-to-noise ratios (SNRs). In this article, we present an alternative approach to capture dark-field STEM images by pulse-counting individual electrons as they are scattered to the annular dark-field (ADF) detector. Digital images formed in this way are immune from analog artifacts of streaking or afterglow and allow clean, high-SNR images to be obtained even at low beam-currents. We present results from both a ThermoFisher FEI Titan G2 operated at 300 kV and a Nion UltraSTEM200 operated at 200 kV, and compare the images to conventional analog recordings. ADF data are compared with analog counterparts for each instrument, a digital detector-response scan is performed on the Titan, and the overall rastering efficiency is evaluated for various scanning parameters.

6.
Phys Rev Lett ; 124(10): 106105, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216442

RESUMO

We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.

7.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31747756

RESUMO

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

8.
Phys Rev Lett ; 122(6): 066101, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822049

RESUMO

Understanding nanostructures down to the atomic level is the key to optimizing the design of advanced materials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.

13.
Nano Lett ; 17(7): 4003-4012, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28644034

RESUMO

Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

15.
Nano Lett ; 14(11): 6336-41, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25340541

RESUMO

Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticle's 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.

16.
Ultramicroscopy ; 264: 113996, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885602

RESUMO

With the recent progress in the development of detectors in electron microscopy, it has become possible to directly count the number of electrons per pixel, even with a scintillator-type detector, by incorporating a pulse-counting module. To optimize a denoising method for electron counting imaging, in this study, we propose a Poisson denoising method for atomic-resolution scanning transmission electron microscopy images. Our method is based on the Markov random field model and Bayesian inference, and we can reduce the electron dose by a factor of about 15 times or further below. Moreover, we showed that the method of reconstruction from multiple images without integrating them performs better than that from an integrated image.

17.
Nat Commun ; 15(1): 278, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177181

RESUMO

Networks of solution-processed nanomaterials are becoming increasingly important across applications in electronics, sensing and energy storage/generation. Although the physical properties of these devices are often completely dominated by network morphology, the network structure itself remains difficult to interrogate. Here, we utilise focused ion beam - scanning electron microscopy nanotomography (FIB-SEM-NT) to quantitatively characterise the morphology of printed nanostructured networks and their devices using nanometre-resolution 3D images. The influence of nanosheet/nanowire size on network structure in printed films of graphene, WS2 and silver nanosheets (AgNSs), as well as networks of silver nanowires (AgNWs), is investigated. We present a comprehensive toolkit to extract morphological characteristics including network porosity, tortuosity, specific surface area, pore dimensions and nanosheet orientation, which we link to network resistivity. By extending this technique to interrogate the structure and interfaces within printed vertical heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.

18.
Microsc Microanal ; 19(4): 1050-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23673234

RESUMO

The aberration-corrected scanning transmission electron microscope has great sensitivity to environmental or instrumental disturbances such as acoustic, mechanical, or electromagnetic interference. This interference can introduce distortions to the images recorded and degrade both signal noise and resolution performance. In addition, sample or stage drift can cause the images to appear warped and leads to unreliable lattice parameters being exhibited. Here a detailed study of the sources, natures, and effects of imaging distortions is presented, and from this analysis a piece of image reconstruction code has been developed that can restore the majority of the effects of these detrimental image distortions for atomic-resolution data. Example data are presented, and the performance of the restored images is compared quantitatively against the as-recorded data. An improvement in apparent resolution of 16% and an improvement in signal-to-noise ratio of 30% were achieved, as well as correction of the drift up to the precision to which it can be measured.

19.
Ultramicroscopy ; 248: 113715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36924599

RESUMO

Precession electron diffraction has in the past few decades become a powerful technique for structure solving, strain analysis, and orientation mapping, to name a few. One of the benefits of precessing the electron beam, is increased reciprocal space resolution, albeit at a loss of spatial resolution due to an effect referred to as 'probe wandering'. Here, a new methodology of precession path segmentation is presented to counteract this effect and increase the resolution in reconstructed virtual images from scanning precession electron diffraction data. By utilizing fast pixelated electron detector technology, multiple frames are recorded for each azimuthal rotation of the beam, allowing for the probe wandering to be corrected in post-acquisition processing. Not only is there an apparent increase in the resolution of the reconstructed images, but probe wandering due to instrument misalignment is reduced, potentially easing an already difficult alignment procedure.

20.
ACS Omega ; 8(1): 925-933, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643545

RESUMO

One of the weaknesses of silicon-based batteries is the rapid deterioration of the charge-storage capacity with increasing cycle numbers. Pure silicon anodes tend to suffer from poor cycling ability due to the pulverization of the crystal structure after repeated charge and discharge cycles. In this work, we present the synthesis of a hollow nanostructured SiO2 material for lithium-ion anode applications to counter this drawback. To improve the understanding of the synthesis route, the crucial synthesis step of removing the ZnO template core is shown using an in situ closed gas-cell sample holder for transmission electron microscopy. A direct visual observation of the removal of the ZnO template from the SiO2 shell is yet to be reported in the literature and is a critical step in understanding the mechanism by which these hollow nanostructures form from their core-shell precursors for future electrode material design. Using this unique technique, observation of dynamic phenomena at the individual particle scale is possible with simultaneous heating in a reactive gas environment. The electrochemical benefits of the hollow morphology are demonstrated with exceptional cycling performance, with capacity increasing with subsequent charge-discharge cycles. This demonstrates the criticality of nanostructured battery materials for the development of next-generation Li+-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA