Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Bioeng ; 14(3): 223-230, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34109001

RESUMO

INTRODUCTION: Precision mapping of the functional structure of platelet populations holds great promise for the identification of hyper-reactive subtypes that are likely to be disease drivers, having value in prognostics and as therapeutic targets. However, the ability to measure the intrinsic functional capacity of individual platelets is confounded by potent paracrine cross-talk, resulting in phenotypic remodeling of the entire platelet population, and in doing so obscuring the identity of hyper-reactive platelets. METHODS: To address this we have developed a droplet microfluidics strategy for single platelet confinement to exclude paracrine signaling. Consideration of the Poisson distribution was used for high throughput single platelet encapsulation and the preparation of minimal platelet collectives serving as digital models for understanding the role of hyper-reactive platelets coordinating system-level behavior by paracrine signaling. Platelets are retrieved from the droplets for phenotyping using standard flow cytometry. In addition, we have incorporated a staggered herringbone micromixing element for accurate agonist and antibody dispensing in droplets. RESULTS: The methodology was used for characterizing sensitivity distributions from healthy blood donors in response to convulxin (agonist of the GPVI receptor, the major platelet receptor for collagen). P-selectin exposure and α IIb ß 3 integrin activation were used as analytical end-points to demonstrate the existence of hyper-reactive platelets that direct 20-fold gains in system level sensitivity. CONCLUSIONS: The analytical workflow represents an enabling tool for the accurate classification of platelet subtypes and description of their underlying biology. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12195-020-00665-6) contains supplementary material, which is available to authorized users.

2.
Lab Chip ; 21(17): 3378-3386, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240097

RESUMO

The future of single cell diversity screens involves ever-larger sample sizes, dictating the need for higher throughput methods with low analytical noise to accurately describe the nature of the cellular system. Current approaches are limited by the Poisson statistic, requiring dilute cell suspensions and associated losses in throughput. In this contribution, we apply Dean entrainment to both cell and bead inputs, defining different volume packets to effect efficient co-encapsulation. Volume ratio scaling was explored to identify optimal conditions. This enabled the co-encapsulation of single cells with reporter beads at rates of ∼1 million cells per hour, while increasing assay signal-to-noise with cell multiplet rates of ∼2.5% and capturing ∼70% of cells. The method, called Pirouette coupling, extends our capacity to investigate biological systems.


Assuntos
Bioensaio , Análise de Célula Única , Ruído
3.
Commun Biol ; 3(1): 281, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499608

RESUMO

Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease.


Assuntos
Plaquetas/fisiologia , Colágeno/metabolismo , Lectinas Tipo C/metabolismo , Trombina/metabolismo , Adulto , Doadores de Sangue/estatística & dados numéricos , Venenos de Crotalídeos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Técnicas Analíticas Microfluídicas , Pessoa de Meia-Idade , Contagem de Plaquetas , Análise de Célula Única , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA