Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 10(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34441497

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.

2.
Anaerobe ; 16(1): 19-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19446030

RESUMO

Industrial fishing effluents are characterized by high loads of protein and sulfate that stimulate the activity of proteolytic and sulfate reducing bacteria during anaerobic digestion. Their metabolic products (NH3 and H2S respectively) have a well-known detrimental effect on the activity of methanogens. Since methylamine is a carbon source used by methylaminotrophic methane producing archaea (mMPA) but not by sulfate reducing bacteria (SRB), enriched mMPA anaerobic biofilms have been developed on ceramics. We propose that methylated amines could be produced in the biofilm by using betaine, a known precursor of methylamine, as a carbon and energy source. We isolated an anaerobic betainotrophic methylaminogenic bacterial strain (bMB) from an anaerobic bioreactor, using betaine as the only carbon and energy source. This strain was identified by a standard biochemical test (API 20NE), cloning, and 16S rDNA sequencing. bMB biofilm structure and biofilm growth kinetic parameters were determined by means of scanning electron microscopy (SEM), and the Gompertz growth model, respectively. Monomethylamine production was determined by infrared spectroscopy and by high pressure liquid chromatography. The isolated bMB strain was determined as Stappia stellulata (Proteobacteria phylum). It was able to form biofilm on ceramics and its kinetic growth parameters resulted in: maximum biofilm bacterial count (A) of 6.25 x 10(8) UFC/cm(2) and maximum specific growth rate (mu(m)) of 0.0221/h. Production of monomethylamine was about 4.027 atogram/cell/day (at/cell/day) after 15 days of incubation in biofilms. This study confirms the adhesion capacity of this bMB strain on ceramic supports, assuring that monomethylamine production in biofilms could be enriched with mMPA that use monomethylamine.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Metilaminas/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Betaína/metabolismo , Cerâmica , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
J Aquat Anim Health ; 27(2): 112-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26000731

RESUMO

The main goal of this study was to find bacterial isolates with the ability to inhibit the growth of the fish pathogens Aeromonas hydrophila, Vibrio anguillarum, and Flavobacterium psychrophilum and to inhibit the blockage of the quorum-sensing (QS) system. A total of 80 gram-negative strains isolated from various freshwater Chilean salmonid farms were studied. We determined that 10 strains belonging to the genus Pseudomonas inhibited at least one of the assayed fish pathogens. Of these, nine strains were able to produce siderophores and two strains were able to inhibit the growth of all assayed pathogenic species. When the 80 strains were examined for QS-blocking activity, only the strains Pseudomonas sp. FF16 and Raoultella planticola R5B1 were identified as QS blockers. When the QS-blocker strains were analyzed for their ability to produce homoserine lactone (HSL) molecules, thin-layer chromatography analysis showed that both strains were able to produce C6-HSL- and C8-HSL-type molecules. Strain R5B1 did not show growth inhibition properties, but strain FF16 also led to inhibition of growth in A. hydrophila and F. psychrophilum as well as to siderophore production. Pseudomonas sp. FF16 exhibited potentially useful antagonistic properties and could be a probiotic candidate for the salmon farming industry.


Assuntos
Bactérias/crescimento & desenvolvimento , Doenças dos Peixes/microbiologia , Percepção de Quorum/fisiologia , Salmonidae/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Doenças dos Peixes/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA