Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Extremophiles ; 20(3): 251-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071404

RESUMO

Protein misfolding, aggregation and deposition in the brain, in the form of amyloid, are implicated in the etiology of several neurodegenerative disorders, such as Alzheimer's, Parkinson's and prion diseases. Drugs available on the market reduce the symptoms, but they are not a cure. Therefore, it is urgent to identify promising targets and develop effective drugs. Preservation of protein native conformation and/or inhibition of protein aggregation seem pertinent targets for drug development. Several studies have shown that organic solutes, produced by extremophilic microorganisms in response to osmotic and/or heat stress, prevent denaturation and aggregation of model proteins. Among these stress solutes, mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, diglycerol phosphate and ectoine are effective in preventing amyloid formation by Alzheimer's Aß peptide and/or α-synuclein in vitro. Moreover, mannosylglycerate is a potent inhibitor of Aß and α-synuclein aggregation in living cells, and mannosylglyceramide and ectoine inhibit aggregation and reduce prion peptide-induced toxicity in human cells. This review focuses on the efficacy of stress solutes from hyper/thermophiles and ectoines to prevent amyloid formation in vitro and in vivo and their potential application in drug development against protein misfolding diseases. Current and envisaged applications of these extremolytes in neurodegenerative diseases and healthcare will also be addressed.


Assuntos
Diamino Aminoácidos/farmacologia , Amiloide/efeitos dos fármacos , Archaea/metabolismo , Bactérias/metabolismo , Ácidos Glicéricos/farmacologia , Glicerofosfatos/farmacologia , Manose/análogos & derivados , Deficiências na Proteostase/prevenção & controle , Estresse Fisiológico , Animais , Humanos , Manose/farmacologia
2.
Environ Microbiol ; 17(7): 2492-504, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25472423

RESUMO

We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L-myo-inositol-1-phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)-inositol, a metabolite only known in the synthesis of di-myo-inositol phosphate. However, this solute is absent in R. marinus. The fate of radiolabelled CDP-inositol was investigated in cell extracts to reveal that radioactive inositol was incorporated into the chloroform-soluble fraction. Mass spectrometry showed that the major lipid product has a molecular mass of 810 Da and contains inositol phosphate and alkyl chains attached to glycerol by ether bonds. The occurrence of ether-linked lipids is rare in bacteria and has not been described previously in R. marinus. The relevant synthase was identified by functional expression of the candidate gene in Escherichia coli. The enzyme catalyses the transfer of L-myo-inositol-1-phosphate from CDP-inositol to dialkylether glycerol yielding dialkylether glycerophosphoinositol. Database searching showed homologous proteins in two bacterial classes, Sphingobacteria and Alphaproteobacteria. This is the first report of the involvement of CDP-inositol in phospholipid synthesis.


Assuntos
Cistina Difosfato/metabolismo , Citidina Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Inositol/metabolismo , Fosfatidilinositóis/biossíntese , Rhodothermus/metabolismo , Vias Biossintéticas , Nucleotidiltransferases/metabolismo
3.
Biochim Biophys Acta ; 1830(8): 4065-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23608058

RESUMO

BACKGROUND: Protein aggregation in the brain is a central hallmark in many neurodegenerative diseases. In Parkinson's disease, α-synuclein (α-Syn) is the major component of the intraneuronal inclusions found in the brains of patients. Current therapeutics is merely symptomatic, and there is a pressing need for developing novel therapies. Previously we showed that mannosylglycerate (MG), a compatible solute typical of marine microorganisms thriving in hot environments, is highly effective in protecting a variety of model proteins against thermal denaturation and aggregation in vitro. METHODS: Saccharomyces cerevisiae cells expressing eGFP-tagged α-Syn, were further engineered to synthesize MG. The number of cells with fluorescent foci was assessed by fluorescence microscopy. Fluorescence spectroscopy and transmission electron microscopy were used to monitor fibril formation in vitro. RESULTS: We observed a 3.3-fold reduction in the number of cells with α-Syn foci and mild attenuation of α-Syn-induced toxicity. Accordingly, sucrose gradient analysis confirmed a clear reduction in the size-range of α-Syn species in the cells. MG did not affect the expression levels of α-Syn or its degradation rate. Moreover, MG did not induce molecular chaperones (Hsp104, Hsp70 and Hsp40), suggesting the implication of other mechanisms for α-Syn stabilization. MG also inhibited α-Syn fibrillation in vitro. CONCLUSIONS: MG acts as a chemical chaperone and the stabilization mechanism involves direct solute/protein interactions. GENERAL SIGNIFICANCE: This is the first demonstration of the anti-aggregating ability of MG in the intracellular milieu. The work shows that MG is a good candidate to inspire the development of new drugs for protein-misfolding diseases.


Assuntos
Ácidos Glicéricos/farmacologia , Manose/análogos & derivados , Doença de Parkinson/tratamento farmacológico , Dobramento de Proteína/efeitos dos fármacos , alfa-Sinucleína/química , Humanos , Manose/farmacologia , Doença de Parkinson/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo
4.
Extremophiles ; 18(5): 835-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108362

RESUMO

Halophilic and halotolerant microorganisms adapted to thrive in hot environments accumulate compatible solutes that usually have a negative charge either associated with a carboxylic group or a phosphodiester unit. Mannosylglycerate (MG) has been detected in several members of (hyper)thermophilic bacteria and archaea, in which it responds primarily to osmotic stress. The outstanding ability of MG to stabilize protein structure in vitro as well as in vivo has been convincingly demonstrated. These findings led to an increasingly supported link between MG and microbial adaptation to high temperature. However, the accumulation of MG in many red algae has been known for a long time, and the peculiar distribution of MG in such distant lineages was intriguing. Knowledge on the biosynthetic machinery together with the rapid expansion of genome databases allowed for structural and phylogenetic analyses and provided insight into the distribution of MG. The two pathways for MG synthesis have distinct evolutionary histories and physiological roles: in red algae MG is synthesised exclusively via the single-step pathway and most probably is unrelated with stress protection. In contrast, the two-step pathway is strongly associated with osmoadaptation in (hyper)thermophilic prokaryotes. The phylogenetic analysis of the two-step pathway also reveals a second cluster composed of fungi and mesophilic bacteria, but MG has not been demonstrated in members of this cluster; we propose that the synthase is part of a more complex pathway directed at the synthesis of yet unknown molecules containing the mannosyl-glyceryl unit.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Molecular , Manose/análogos & derivados , Adaptação Fisiológica , Sequência de Aminoácidos , Archaea/metabolismo , Bactérias/metabolismo , Ácidos Glicéricos , Manose/biossíntese , Manose/genética , Dados de Sequência Molecular
5.
Neurochem Res ; 36(6): 1005-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21416120

RESUMO

Protein misfolding and deposition in the brain are implicated in the etiology of numerous neurodegenerative disorders. Here, organic solutes characteristic of microorganisms adapted to hot environments, were tested on experimental cell models of Huntington's and Parkinson's diseases. Diglycerol phosphate, di-myo-inositol phosphate, mannosylglycerate, and mannosylglyceramide were not toxic to the cells, at 10 mM concentration, but caused a decrease in cell density, which suggested an effect on proliferation. In contrast, mannosyl-lactate, an artificial analogue of mannosylglycerate, had a negative impact on cell viability. Concerning protein aggregation, inclusions of mutant huntingtin were reduced in the presence of diglycerol phosphate and di-myo-inositol phosphate, increased with mannosylglycerate, while mannosyl-lactate and mannosylglyceramide had no significant effect. α-Synuclein aggregation was not affected by the solutes tested, except for di-myo-inositol phosphate that led to a slight increased percentage of cells displaying visible aggregates. These solutes might be useful in the development of therapies for protein misfolding diseases.


Assuntos
Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Western Blotting , Células Cultivadas , Humanos , Microscopia de Fluorescência
6.
J Mol Biol ; 432(18): 5137-5151, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32389689

RESUMO

In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Mycobacterium/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Modelos Moleculares , Mycobacterium/química , Conformação Proteica , Especificidade por Substrato
7.
J Bacteriol ; 190(6): 1871-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192391

RESUMO

Trehalose uptake at 65 degrees C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 +/- 11 microM and Vmax = 21.2 +/- 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 +/- 0.03 microM and Vmax = 0.39 +/- 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 +/- 3 microM and Vmax = 48 +/- 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 microM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.


Assuntos
Proteínas de Bactérias/fisiologia , Rhodothermus/metabolismo , Trealase/metabolismo , Trealose/metabolismo , Arseniatos/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Etanol/farmacologia , Glucose/metabolismo , Glucose/farmacocinética , Isomaltose/análogos & derivados , Isomaltose/metabolismo , Isomaltose/farmacocinética , Cinética , Modelos Teóricos , Periplasma/enzimologia , Rhodothermus/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Trealose/farmacocinética
8.
FEBS J ; 274(12): 3120-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17521333

RESUMO

The intracellular accumulation of low molecular mass organic compounds in response to stressful conditions was investigated in the thermophilic bacterium Petrotoga miotherma, a member of the order Thermotogales. This led to the discovery of a new solute, whose structure was established as alpha-D-mannopyranosyl-(1-->2)-alpha-D-glucopyranosyl-(1-->2)-glycerate (MGG) by MMR spectroscopy and MS. Under optimum growth conditions (3% NaCl; 55 degrees C), MGG was the major solute [up to 0.6 micromol.(mg protein)(-1)]; alpha-glutamate and proline were also present but in minor amounts [below 0.08 micromol.(mg protein)(-1)]. The level of MGG increased notably with the salinity of the growth medium up to the optimum NaCl concentration. At higher NaCl concentrations, however, the level of MGG decreased, whereas the levels of proline and alpha-glutamate increased about five-fold and 10-fold, respectively. MGG plays a role during low-level osmotic adaptation of Petrotoga miotherma, whereas alpha-glutamate and, to a lesser extent, proline are used for osmoprotection under salt stress. MGG is not part of the cell strategy for coping with heat or oxidative stress. Nevertheless, MGG was an efficient protector of pig heart malate dehydrogenase against heat inactivation and freeze-drying, although mannosylglycerate was better. This is the first report on the occurrence of MGG in living systems.


Assuntos
Bactérias/metabolismo , Dissacarídeos/química , Ácidos Glicéricos/química , Adaptação Fisiológica , Animais , Bactérias/crescimento & desenvolvimento , Dissacarídeos/fisiologia , Liofilização , Ácido Glutâmico/biossíntese , Malato Desidrogenase/química , Miocárdio/enzimologia , Osmose , Estresse Oxidativo , Prolina/biossíntese , Cloreto de Sódio/farmacologia , Suínos , Temperatura
9.
J Photochem Photobiol B ; 154: 16-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26613347

RESUMO

The fluorescence of the four tyrosines of α-synuclein (Syn) was used for probing the earliest events preceding the fibrillation of Syn, during the onset of the so-called lag-time of fibrillation. Steady-state fluorescence experiments revealed an increase in the fluorescence intensity (FI) for Syn solutions at pH values 3 and 2, in comparison with pH7, and fluorescence decays indicated that the FI increase did not result from suppression of excited-state proton transfer from the tyrosines to aspartates and glutamates, exposure of tyrosines to more hydrophobic environments, or reduction of homo-energy transfer. Instead, the FI increase was due to changes in the population of the tyrosine rotamers at low pH values. Stopped-flow experiments (pH-jumps) showed that the FI enhancement involves two processes: a fast (sub-7 ms) intramolecular (concentration-independent) process, which we assign to the protein collapse at low pH, and a slower intermolecular (concentration-dependent) process of protein dimerization/oligomerization, starting at 4-10s after acidification. To the best of our knowledge, this is the first work on the experimental detection of these earliest processes in the fibrillation of Syn.


Assuntos
Corantes Fluorescentes/química , Tirosina/química , alfa-Sinucleína/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Prótons , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrofotometria Ultravioleta , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
Nat Commun ; 6: 8505, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26510127

RESUMO

Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.


Assuntos
Proteínas de Bactérias/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Micrococcaceae/enzimologia , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , Cristalografia por Raios X , Cinética , Micrococcaceae/química , Micrococcaceae/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia
11.
Extremophiles ; 11(1): 115-22, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16944251

RESUMO

Trehalases play a central role in the metabolism of trehalose and can be found in a wide variety of organisms. A periplasmic trehalase (alpha,alpha-trehalose glucohydrolase, EC 3.2.1.28) from the thermophilic bacterium Rhodothermus marinus was purified and the respective encoding gene was identified, cloned and overexpressed in Escherichia coli. The recombinant trehalase is a monomeric protein with a molecular mass of 59 kDa. Maximum activity was observed at 88 degrees C and pH 6.5. The recombinant trehalase exhibited a K(m) of 0.16 mM and a V(max) of 81 micromol of trehalose (min)(-1) (mg of protein)(-1) at the optimal temperature for growth of R. marinus (65 degrees C) and pH 6.5. The enzyme was highly specific for trehalose and was inhibited by glucose with a K(i) of 7 mM. This is the most thermostable trehalase ever characterized. Moreover, this is the first report on the identification and characterization of a trehalase from a thermophilic bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Periplásmicas/metabolismo , Rhodothermus/enzimologia , Trealase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Bases de Dados de Proteínas , Estabilidade Enzimática , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/isolamento & purificação , Filogenia , Proteínas Recombinantes/metabolismo , Rhodothermus/genética , Rhodothermus/crescimento & desenvolvimento , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Temperatura , Trealase/química , Trealase/genética , Trealase/isolamento & purificação , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA