Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L646-L650, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529551

RESUMO

Novel screening techniques for early detection of lung cancer are urgently needed. Profiling circulating tumor cell-free DNA (ctDNA) has emerged as a promising tool for biopsy-free tumor genotyping. However, both the scarcity and short half-life of ctDNA substantially limit the sensitivity and clinical utility of ctDNA detection methodologies. Our discovery that red blood cells (RBCs) sequester mitochondrial DNA opens a new avenue for detecting circulating nucleic acids, as RBCs represent an unrecognized reservoir of circulating nucleic acid. Here, we show that RBCs acquire tumor DNA following coculture with lung cancer cell lines harboring Kirsten rat sarcoma viral oncogene homolog (KRAS) and epidermal growth factor receptor (EGFR) mutations. RBC-bound tumor DNA is detectable in patients with early-stage non-small cell lung cancer (NSCLC) but not in healthy controls by qPCR. Our results collectively uncover a previously unrecognized yet easily accessible reservoir of tumor DNA, offering a promising foundation for future RBC-based tumor diagnostics.NEW & NOTEWORTHY We present a novel method for lung cancer detection by revealing RBCs as a reservoir for tumor DNA, overcoming the limitations of current circulating tumor ctDNA methodologies. By demonstrating that RBCs can capture tumor DNA, including critical mutations found in lung cancer, we provide a promising, biopsy-free avenue for early cancer diagnostics. This discovery opens up exciting possibilities for developing RBC-based diagnostic tools, significantly enhancing the sensitivity and clinical utility of noninvasive cancer detection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Eritrócitos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Eritrócitos/metabolismo , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Mutação , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Proteínas Proto-Oncogênicas p21(ras)/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , DNA de Neoplasias/sangue , DNA de Neoplasias/genética
2.
Res Sq ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38746470

RESUMO

Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not TLR9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid TLR9-deleted mice. Plasma cytokine analysis revealed distinct sepsis endotypes, characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-TLR9 deletion attenuated plasma and tissue IL-6 production in the most severe endotype. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.

3.
Sci Rep ; 12(1): 20329, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434021

RESUMO

Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Pró-Fármacos , Animais , Ratos , Intoxicação por Organofosfatos/tratamento farmacológico , Atropina/farmacologia , Atropina/uso terapêutico , Pró-Fármacos/farmacologia , Isoflurofato/toxicidade , Ácido Succínico , Acetilcolinesterase/metabolismo , Roedores/metabolismo , Succinatos , Mitocôndrias/metabolismo , Lesões Encefálicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA