Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175776

RESUMO

Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.


Assuntos
HIV-1 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Animais , Camundongos , Papillomavirus Humano 16/genética , Papillomavirus Humano , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18 , Peptídeos , Proteínas do Capsídeo/química , Mamíferos
2.
PLoS One ; 19(6): e0304085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905190

RESUMO

In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system's components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope confer the system a wide range of image-based diagnosis applications. The accessibility of the system could help improve diagnostics and provide new tools to laboratories worldwide.


Assuntos
Microscopia , Microscopia/métodos , Microscopia/instrumentação , Microscopia/economia , Humanos , Impressão Tridimensional/instrumentação , Software , Robótica/instrumentação , Smartphone , Automação , Imageamento Tridimensional/métodos
3.
Front Microbiol ; 14: 1240936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075929

RESUMO

Introduction: Malaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is time-consuming and difficult to reproduce. Therefore, new diagnostic techniques based on digital image analysis using artificial intelligence tools can improve diagnosis and help automate it. Methods: In this study, a dataset of 2571 labeled thick blood smear images were created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural networks were trained on the same dataset to evaluate their performance in Plasmodium parasite detection. Attention modules were applied and compared with YOLOv5x results. To automate the entire diagnostic process, a prototype of 3D-printed pieces was designed for the robotization of conventional optical microscopy, capable of auto-focusing the sample and tracking the entire slide. Results: Comparative analysis yielded a performance for YOLOv5x on a test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 for leukocyte, early and mature Plasmodium trophozoites overall detection. F-score values of each category were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozoites detection. Attention modules performance show non-significant statistical differences when compared to YOLOv5x original trained model. The predictive models were integrated into a smartphone-computer application for the purpose of image-based diagnostics in the laboratory. The system can perform a fully automated diagnosis by the auto-focus and X-Y movements of the robotized microscope, the CNN models trained for digital image analysis, and the smartphone device. The new prototype would determine whether a Giemsa-stained thick blood smear sample is positive/negative for Plasmodium infection and its parasite levels. The whole system was integrated into the iMAGING smartphone application. Conclusion: The coalescence of the fully-automated system via auto-focus and slide movements and the autonomous detection of Plasmodium parasites in digital images with a smartphone software and AI algorithms confers the prototype the optimal features to join the global effort against malaria, neglected tropical diseases and other infectious diseases.

4.
Vaccines (Basel) ; 11(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36679860

RESUMO

In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.

5.
Front Microbiol ; 13: 1006659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458185

RESUMO

Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.

6.
Pharmaceutics ; 13(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834382

RESUMO

Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.

7.
Front Immunol ; 11: 573157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117367

RESUMO

Prophylactic vaccines remain the best approach for controlling the human immunodeficiency virus-1 (HIV-1) transmission. Despite the limited efficacy of the RV144 trial in Thailand, there is still no vaccine candidate that has been proven successful. Consequently, great efforts have been made to improve HIV-1 antigens design and discover delivery platforms for optimal immune elicitation. Owing to immunogenic, structural, and functional diversity, virus-like particles (VLPs) could act as efficient vaccine carriers to display HIV-1 immunogens and provide a variety of HIV-1 vaccine development strategies as well as prime-boost regimes. Here, we describe VLP-based HIV-1 vaccine candidates that have been enrolled in HIV-1 clinical trials and summarize current advances and challenges according to preclinical results obtained from five distinct strategies. This mini-review provides multiple perspectives to help in developing new generations of VLP-based HIV-1 vaccine candidates with better capacity to elicit specific anti-HIV immune responses.


Assuntos
Vacinas contra a AIDS/farmacologia , Desenho de Fármacos , Antígenos HIV/farmacologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Animais , Anticorpos Anti-HIV/sangue , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunogenicidade da Vacina , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
Vaccines (Basel) ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202884

RESUMO

The use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for HIV-1-specific T-cell induction. In this study, we used recombinant BCG expressing HIVACAT T-cell immunogen (HTI), BCG.HTI2auxo.int. BALB/c mice immunization with BCG.HTI2auxo.int prime and MVA.HTI boost was safe and induced HIV-1-specific T-cell responses. Two weeks after boost, T-cell responses were assessed by IFN-γ ELISpot. The highest total magnitude of IFN-γ spot-forming cells (SFC)/106 splenocytes was observed in BCG.HTI2auxo.int primed mice compared to mice receiving MVA.HTI alone or mice primed with BCGwt, although the differences between the vaccination regimens only reached trends. In order to evaluate the differences in the breadth of the T-cell immune responses, we examined the number of reactive peptide pools per mouse. Interestingly, both BCG.HTI2auxo.int and BCGwt primed mice recognized an average of four peptide pools per mouse. However, the variation was higher in BCG.HTI2auxo.int primed mice with one mouse recognizing 11 peptide pools and three mice recognizing few or no peptide pools. The recognition profile appeared to be more spread out for BCG.HTI2auxo.int primed mice and mice only receiving MVA.HTI. Here, we describe a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent infectious diseases.

9.
Mol Ther Methods Clin Dev ; 13: 253-264, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30859110

RESUMO

The tuberculosis (TB) vaccine MTBVAC is the only live-attenuated Mycobacterium tuberculosis (Mtb)-based vaccine in clinical development, and it confers superior protection in different animal models compared to the current vaccine, BCG (Mycobacterium bovis bacillus Calmette-Guérin). With the aim of using MTBVAC as a vector for a dual TB-HIV vaccine, we constructed the recombinant MTBVAC.HIVA2auxo strain. First, we generated a lysine auxotroph of MTBVAC (MTBVACΔlys) by deleting the lysA gene. Then the auxotrophic MTBVACΔlys was transformed with the E. coli-mycobacterial vector p2auxo.HIVA, harboring the lysA-complementing gene and the HIV-1 clade A immunogen HIVA. This TB-HIV vaccine conferred similar efficacy to the parental strain MTBVAC against Mtb challenge in mice. MTBVAC.HIVA2auxo was safer than BCG and MTBVAC in severe combined immunodeficiency (SCID) mice, and it was shown to be maintained up to 42 bacterial generations in vitro and up to 100 days after inoculation in vivo. The MTBVAC.HIVA2auxo vaccine, boosted with modified vaccinia virus Ankara (MVA).HIVA, induced HIV-1 and Mtb-specific interferon-γ-producing T cell responses and polyfunctional HIV-1-specific CD8+ T cells producing interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and CD107a in BALB/c mice. Here we describe new tools to develop combined vaccines against TB and HIV with the potential of expansion for other infectious diseases.

10.
Expert Rev Vaccines ; 17(11): 1005-1020, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300040

RESUMO

INTRODUCTION: Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED: In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY: The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacina BCG/administração & dosagem , Infecções por HIV/prevenção & controle , Vacinas contra a AIDS/imunologia , Animais , Vacina BCG/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Mycobacterium bovis/imunologia , Vacinação/métodos
11.
Enferm Infecc Microbiol Clin ; 23 Suppl 2: 5-24, 2005 Jul.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-16373000

RESUMO

The uncontrolled progression of the AIDS epidemic has made the development of an efficacious human immunodeficiency virus (HIV) vaccine a major objective of scientific research. No effective preventive vaccine against HIV is currently available and sterilizing immunity has not yet been achieved in animal models. This review analyses the major challenges in developing an AIDS vaccine, in particular the mechanisms involved in viral escape from the immune response, and summarizes the results obtained with the different prototypes of therapeutic and preventive vaccines. Finally, social, economic and healthcare aspects of research into HIV vaccines and current controversies regarding the development of clinical trials are discussed.


Assuntos
Vacinas contra a AIDS , Vacinas contra a AIDS/economia , Vacinas contra a AIDS/imunologia , Animais , Variação Antigênica/genética , Ensaios Clínicos como Assunto/normas , Ensaios Clínicos como Assunto/estatística & dados numéricos , Objetivos , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , Antígenos HIV/genética , Antígenos HIV/imunologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , HIV-1/genética , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Imunidade nas Mucosas , Epitopos Imunodominantes/imunologia , Macaca , Estudos Multicêntricos como Assunto/estatística & dados numéricos , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Vacinação/economia , Vacinação/ética , Vacinas Atenuadas , Vacinas de DNA , Vacinas de Produtos Inativados , Vacinas Sintéticas , Ativação Viral , Latência Viral
12.
Enferm Infecc Microbiol Clin ; 23: 15-24, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38620211

RESUMO

The uncontrolled progression of the aids epidemic has made the development of an efficacious human immunodeficiency virus (HIV) vaccine a major objective of scientific research. No effective preventive vaccine against HIV is currently available and sterilizing immunity has not yet been achieved in animal models. This review analyses the major challenges in developing an aids vaccine, in particular the mechanisms involved in viral escape from the immune response, and summarizes the results obtained with the different prototypes of therapeutic and preventive vaccines. Finally, social, economic and healthcare aspects of research into HIV vaccines and current controversies regarding the development of clinical trials are discussed.


El avance de la epidemia de sida ha convertido la obtención de una vacuna eficaz frente al virus de la inmunodeficiencia humana (VIH) como un objetivo científico prioritario. En el momento actual no disponemos de una vacuna preventiva frente a la infección por el VIH y en ningún modelo animal se ha conseguido la protección frente a la infección. En esta revisión se analizan las dificultades existentes en el desarrollo de una vacuna contra el sida, en especial los mecanismos de escape viral a la respuesta inmunitaria y se describen los prototipos de vacunas preventivas y terapéuticas en desarrollo y los resultados obtenidos. Por otra parte se sitúa esta investigación en el contexto sanitario, económico y social de la pandemia de sida y se analizan las polémicas actualmente planteadas en el desarrollo de ensayos clínicos con los diferentes tipos de vacunas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA