Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Appl Microbiol Biotechnol ; 102(5): 2413-2424, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380031

RESUMO

Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71-75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70-98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Ferro/metabolismo , Mineração , Oxirredução , Filogenia , Temperatura , Poluentes Químicos da Água/análise
2.
Appl Microbiol Biotechnol ; 102(22): 9803-9813, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155752

RESUMO

Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment.


Assuntos
Arsênio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Ácidos/química , Ácidos/metabolismo , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Ferro/química , Cinética , Mineração , Oxirredução , Fatores de Tempo , Águas Residuárias/química , Poluentes Químicos da Água/análise
3.
Res Microbiol ; 175(1-2): 104112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37549769

RESUMO

Within the European research project NEMO, a bioleaching strategy was developed for efficient metal extraction from bioleach residue currently heap-leached at Sotkamo (Finland) that still contains sulphidic minerals and valuable metals (Ni, Zn, Co, Cu). The strategy of gradually increasing the solid content with 5% steps allowed the adaptation of the consortium up to 20% (w/w) solid content, with efficient metal dissolution and same dominant bacteria. Largest proportions of Sulfobacillusthermosulfidooxidans while Eh increased suggested it to be most involved in iron oxidation. Acidithiobacilluscaldus was rather found when pH stabilized, in line with a production of protons from sulphur oxidation that maintained low pH. 'Acidithiomicrobium' P2 was favoured towards the end of the runs and at 20% (w/w) solids possibly due to its tolerance to Ni. The use of gene abundance to evaluate biomass in the pulp provided complementary results to classical cell counts in the liquid phase, and suggested a key role of bacteria associated to mineral particles in iron oxidation. Scaling-up in 21-L stirred-tank reactor at 20% (w/w) solids had no detrimental effect on bioleaching and confirmed metal extraction rates. 'Acidithiomicrobium' P2 and Sb. thermosulfidooxidans remained main actors. However, the biological activity was considerably reduced at 30% (w/w) solid concentration, which may be due to a too drastic environmental change for the bacteria to adapt to higher solid concentration. Efficient bioleaching of Sotkamo bioleaching residue at high solid concentration was demonstrated, as well as the robustness of the selected moderately thermophilic consortium, at laboratory and pilot scales.


Assuntos
Ferro , Metais , Concentração de Íons de Hidrogênio , Bactérias/genética , Minerais , Sulfetos
4.
Front Microbiol ; 15: 1358788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533329

RESUMO

In the framework of the H2020 project CROCODILE, the recovery of Co from oxidized ores by reductive bioleaching has been studied. The objective was to reduce Fe(III) to Fe(II) to enhance the dissolution of Co from New-Caledonian limonitic laterites, mainly composed of goethite and Mn oxides. This study focused on the Fe(III) bioreduction which is a relevant reaction of this process. In the first step, biomass growth was sustained by aerobic bio-oxidation of elemental sulfur. In the second step, the biomass anaerobically reduced Fe(III) to Fe(II). The last step, which is not in the scope of this study, was the reduction of limonites and the dissolution of metals. This study aimed at assessing the Fe(III) bioreduction rate at 35°C with a microbial consortium composed predominantly of Sulfobacillus (Sb.) species as the iron reducers and Acidithiobacillus (At.) caldus. It evaluated the influence of the biomass concentration on the Fe(III) bioreduction rate and yield, both in batch and continuous mode. The influence of the composition of the growth medium on the bioreduction rate was assessed in continuous mode. A mean Fe(III) bioreduction rate of 1.7 mg·L-1·h-1 was measured in batch mode, i.e., 13 times faster than the abiotic control (0.13 mg·L-1·h-1). An increase in biomass concentrations in the liquid phase from 4 × 108 cells·mL-1 to 3 × 109 cells·mL-1 resulted in an increase of the mean Fe(III) bioreduction rate from 1.7 to 10 mg·L-1·h-1. A test in continuous stirred tank reactors at 35°C resulted in further optimization of the Fe(III) bioreduction rate which reached 20 mg·L-1·h-1. A large excess of nutrients enables to obtain higher kinetics. The determination of this kinetics is essential for the design of a reductive bioleaching process.

5.
PLoS Genet ; 6(2): e1000859, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195515

RESUMO

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Assuntos
Betaproteobacteria/genética , Evolução Molecular , Genoma Bacteriano/genética , Adaptação Fisiológica/genética , Arsênio/metabolismo , Carbono/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Meio Ambiente , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genes Duplicados/genética , Variação Genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Plasmídeos/genética , Prófagos/genética
6.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37407427

RESUMO

Arsenic (As) and antimony (Sb) from mining sites can seep into aquatic ecosystems by acid mine drainage (AMD). Here, the possibility of concomitantly removing As and Sb from acidic waters by precipitation of sulfides induced by sulfate-reducing bacteria (SRB) was investigated in a fixed-bed column bioreactor. The real AMD water used to feed the bioreactor contained nearly 1 mM As, while the Sb concentrations were increased (0.008 ± 0.006 to 1.01 ± 0.07 mM) to obtain an Sb/As molar ratio = 1. Results showed that the addition of Sb did not affect the efficiency of As bio-precipitation. Sb was removed efficiently (up to 97.9% removal) between the inlet and outlet of the bioreactor, together with As (up to 99.3% removal) in all conditions. Sb was generally removed as it entered the bioreactor. Appreciable sulfate reduction occurred in the bioreactor, which could have been linked to the stable presence of a major SRB operational taxonomic unit affiliated with the Desulfosporosinus genus. The bacterial community included polymer degraders, fermenters, and acetate degraders. Results suggested that sulfate reduction could be a suitable bioremediation process for the simultaneous removal of Sb and As from AMD.


Assuntos
Arsênio , Desulfovibrio , Poluentes Químicos da Água , Antimônio/análise , Sulfatos , Ecossistema , Reatores Biológicos , Poluentes Químicos da Água/análise
7.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37632198

RESUMO

Semi-passive bioreactors based on iron and arsenic oxidation and coprecipitation are promising for the treatment of As-rich acid mine drainages. However, their performance in the field remains variable and unpredictable. Two bioreactors filled with distinct biomass carriers (plastic or a mix of wood and pozzolana) were monitored during 1 year. We characterized the dynamic of the bacterial communities in these bioreactors, and explored the influence of environmental and operational drivers on their diversity and activity. Bacterial diversity was analyzed by 16S rRNA gene metabarcoding. The aioA genes and transcripts were quantified by qPCR and RT-qPCR. Bacterial communities were dominated by several iron-oxidizing genera. Shifts in the communities were attributed to operational and physiochemical parameters including the nature of the biomass carrier, the water pH, temperature, arsenic, and iron concentrations. The bioreactor filled with wood and pozzolana showed a better resilience to disturbances, related to a higher bacterial alpha diversity. We evidenced for the first time aioA expression in a treatment system, associated with the presence of active Thiomonas spp. This confirmed the contribution of biological arsenite oxidation to arsenic removal. The resilience and the functional redundancy of the communities developed in the bioreactors conferred robustness and stability to the treatment systems.


Assuntos
Arsênio , RNA Ribossômico 16S , Reatores Biológicos , Biomassa , Ferro
8.
Chemosphere ; 304: 135252, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35691389

RESUMO

Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 µg L-1). The monitoring of one of these drinking water wells showed As concentrations in the range 20-25 µg L-1. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ34SSO4 was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg-1 As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities conditions, without synthetic organic nutrient supply, in presence of H2 during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeocycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Água Potável/química , Monitoramento Ambiental , Água Subterrânea/química , Humanos , Sulfatos , Poluentes Químicos da Água/análise
9.
Int J Syst Evol Microbiol ; 61(Pt 12): 2816-2821, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21216915

RESUMO

The three As(III)-oxidizing members of the class Betaproteobacteria Thiomonas delicata, Thiomonas cuprina and 'Thiomonas arsenivorans' were isolated from mining sites in geographically distinct areas, namely Japan, Germany and France, respectively. They are all able to oxidize As(III) but only 'T. arsenivorans' and T. cuprina show efficient autotrophic growth with As(III) and are able to grow on a sole carbon source. These two organisms are also motile, whereas T. delicata is not. Only T. cuprina can grow autotrophically on chalcopyrite. The three strains share >99% gene sequence similarity with each other based on their 16S rRNA genes and 16S-23S ITS regions. DNA-DNA hybridization results are above, or close to, the threshold value of 70% recommended for the definition of bacterial species. The three taxa show very similar fatty acid profiles with differences only in five minor fatty acid components. They possess phylogenetic and chemotaxonomic similarities supporting the reclassification of these taxa as a single species. We propose that 'T. arsenivorans' and T. cuprina be reassigned as strains of T. delicata (type strain DSM 17897(T)).


Assuntos
Arsenitos/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Mineração , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
10.
Appl Microbiol Biotechnol ; 89(2): 441-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20890755

RESUMO

During the Bioshale European project, a techno-economic study of the bioleaching of a copper concentrate originating from a black shale ore was carried out. This concentrate is a multi-mineral resource in which the copper sulphides are mainly chalcocite, covellite, bornite and chalcopyrite. The experiments undertaken to produce the techno-economic data were also an opportunity to carry out more fundamental research. The objective of this work was to combine the results of the bioleaching experiments, in terms of copper recovery, with the results of bacterial community monitoring and mineralogy residue analysis. Batch and continuous bioleaching tests were carried out with 10% solids, at 42 °C and with a pH between 1.2 and 1.6. Final copper recovery was higher in batch cultures than in continuous mode (>95% vs. 91%). Mineralogical analysis showed that the limiting factor for copper recovery was incomplete chalcopyrite dissolution in both cases. However, chalcopyrite was even less dissolved in continuous conditions. This was also related to a variation in bacterial community structure. The population in all tests was composed of Acidithiobacillus caldus, Leptospirillum ferriphilum and one or two species of Sulfobacillus (Sulfobacillus thermosulfidooxidans and sometimes Sulfobacillus benefaciens), but Sulfobacillus and more generally sulphur oxidizers were more represented in batch mode. It was proposed that due to their capacity to reduce inorganic compounds, sulphur oxidizers may be efficient in limiting chalcopyrite surface hindering. It may help to better dissolve this mineral and reach a better copper recovery.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Cobre/metabolismo , Minerais/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Oxirredução , Enxofre/metabolismo
11.
Front Microbiol ; 12: 662727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054765

RESUMO

The impact of two pesticides (S-metolachlor and propiconazole) and their respective main metabolites (ESA-metolachlor and 1,2,4-triazole) on bacterial denitrification in groundwater was studied. For this, the denitrification activity and the bacterial diversity of a microbial community sampled from a nitrate-contaminated groundwater were monitored during 20 days in lab experiments in the presence or absence of pesticides or metabolites at 2 or 10 µg/L. The kinetics of nitrate reduction along with nitrite and N2O production all suggested that S-metolachlor had no or only little impact, whereas its metabolite ESA-metolachlor inhibited denitrification by 65% at 10 µg/L. Propiconazole and 1,2,4-triazole also inhibited denitrification at both concentrations, but to a lesser extent (29-38%) than ESA-metolachlor. When inhibition occurred, pesticides affected the reduction of nitrate into nitrite step. However, no significant differences were detected on the abundance of nitrate reductase narG and napA genes, suggesting an impact of pesticides/metabolites at the protein level rather than on denitrifying bacteria abundance. 16S rRNA gene Illumina sequencing indicated no major modification of bacterial diversity in the presence or absence of pesticides/metabolites, except for ESA-metolachlor and propiconazole at 10 µg/L that tended to increase or decrease Shannon and InvSimpson indices, respectively. General growth parameters suggested no impact of pesticides, except for propiconazole at 10 µg/L that partially inhibited acetate uptake and induced a decrease in microbial biomass. In conclusion, pesticides and metabolites can have side effects at environmental concentrations on microbial denitrification in groundwater and may thus affect ecosystem services based on microbial activities.

12.
Sci Total Environ ; 791: 148400, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412406

RESUMO

Metal(loid) soil pollution resulting from mining activities is an important issue that has negative effects on the environment (soil acidification, lack of vegetation, groundwater pollution) and human health (cancer, chronic diseases). In the context of a phytostabilization process for the bioremediation of a mine soil highly contaminated by arsenic (As) and lead (Pb), a pot experiment was set up to study the effect of plant sowing and microbial inoculation on soil properties, metal(loid) (im)mobilization in soil and accumulation in plant, and plant growth. For this, mine soil was sown with endemic metallicolous Agrostis seeds and/or inoculated with endogenous microbial consortia previously selected for their As and Pb tolerance. Agrostis was able to develop on the contaminated mine soil and immobilized metal(loid)s through metal(loid) accumulation in the roots. Its growth was improved by microbial consortium inoculation. Moreover, microbial consortium inoculation increased soil organic content and electrical conductivity, and led to an increase in soil microbial activities (linked to C and P cycles); however, it also induced a metal(loid) mobilization. In conclusion, microbial consortium inoculation stimulated the growth of endemic Agrostis plants and thus ameliorated the phytostabilization of a former mine soil highly polluted by As and Pb. This study is thus a good example of the benefits of coupling several approaches such as phytostabilization and bioaugmentation for the bioremediation of former mine contaminated sites.


Assuntos
Agrostis , Poluentes do Solo , Biodegradação Ambiental , Humanos , Consórcios Microbianos , Solo , Poluentes do Solo/análise
13.
Front Microbiol ; 12: 669738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489879

RESUMO

Bioleaching is a promising strategy to recover valuable metals from spent printed circuit boards (PCBs). The performance of the process is catalyzed by microorganisms, which the toxic effect of PCBs can inhibit. This study aimed to investigate the capacity of an acidophilic iron-oxidizing culture, mainly composed of Leptospirillum ferriphilum, to oxidize iron in PCB-enriched environments. The culture pre-adapted to 1% (w/v) PCB content successfully thrived in leachates with the equivalent of 6% of PCBs, containing 8.5 g L-1 Cu, 8 g L-1 Fe, 1 g L-1 Zn, 92 mg L-1 Ni, 12.6 mg L-1 Pb, and 4.4 mg L-1 Co, among other metals. However, the inhibiting effect of PCBs limited the microbial activity by delaying the onset of the exponential iron oxidation. Successive subcultures boosted the activity of the culture by reducing this delay by up to 2.6 times under batch conditions. Subcultures also favored the rapid establishment of high microbial activity in continuous mode.

14.
Front Microbiol ; 12: 727468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002993

RESUMO

In the context of climate change and biodiversity loss, rehabilitation of degraded urban soils is a means of limiting artificialization of terrestrial ecosystems and preventing further degradation of soils. Ecological rehabilitation approaches are available to reinitiate soil functions and enhance plant development. However, little is known about the long-term stability of rehabilitated soils in terms of soil functions when further natural or anthropogenic perturbations occur. Based on rehabilitated urban soils, the present study sought to evaluate the resistance and resilience of soil functions linked to carbon cycling and phosphate dynamics in addition to nitrogen cycling and related microbial communities after a heat and drought stress. A laboratory experiment was conducted in microcosms under controlled temperature conditions, with four contrasted soils collected from a rehabilitated urban brownfield; an initial, non-rehabilitated soil (IS), a technosol with a high organic matter level (HO), and two technosols with less organic matter (LO1 and LO2), together with their respective controls (no stress). Changes in potential denitrification (PDR), nitrification (PNR) rates, and their interactive relationships with soil microbial activities and soil physicochemical properties were determined following a combined heat (40°C) and drought stress period of 21 days. Measurements were carried out immediately after the stress (resistance), and then also 5, 30, and 92 days after soil rewetting at 60% water holding capacity (resilience). Microbial activities involved in soil functions such as carbon cycling and phosphate dynamics proved to be of low resistance in all soils except for IS; however, they were resilient and recovered rapidly after rewetting. On the other hand, the microbial activities and gene abundances that were measured in relation to nitrogen cycling processes showed that for denitrification, activities were more rapidly resilient than gene abundances whereas for nitrification the activities and gene abundances were resilient in the same way. Results suggest that, unless the soils contain high amounts of organic matter, microbial communities in imported soils can be more vulnerable to environmental pressures such as drought and heat than communities already present. This should be considered when rehabilitating degraded soils.

15.
Environ Sci Pollut Res Int ; 28(33): 45296-45316, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864216

RESUMO

The development of biofilms on modified natural zeolites was investigated with purpose to obtain biocomposites with biodegradation activity towards pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid) and glyphosate (N-(phosphonomethyl)glycine) for potential application in bioaugmentation of polluted agricultural soils. Microbial communities were selected from agricultural pesticide-contaminated soil/water samples and enriched on the basis of their ability to biodegrade the pesticides. In order to enhance affinity of microbial communities to the support material, the natural mineral zeolite was modified by nontoxic environmentally friendly cations (Li+, Na+, K+, NH4+, H+, Mg2+, Ca2+, Fe3+) by methods preserving its structure and characterised using powder XRD, surface area measurement and chemical composition analysis. Kinetics of pesticide degradation by the biocomposites was studied in liquid media. Results showed that according to zeolite modifications, the microbial activity and biodiversity changed. The best biodegradation rate of MCPA and glyphosate reached 0.12-0.13 mg/h with half-life of 16-18 h, which is considerably quicker than observed in natural environment. However, in some cases, biodegradation activity towards pesticides was lost which was connected to unfavourable zeolite modification and accumulation of toxic metabolites. High-throughput sequencing on the 16S rRNA genes of the biofilm communities highlighted the selection of bacteria genera known to metabolise MCPA (Aminobacter, Cupriavidus, Novosphingobium, Pseudomonas, Rhodococcus, Sphingobium and Sphingopyxis) and glyphosate (Pseudomonas). Altogether, results suggested that zeolites do not only have a passive role of biofilm support but also have protective and nutrient-supportive functions that consequently increase biodiversity of the pesticide degraders growing in the biofilm and influence the pesticide biodegradation rate.


Assuntos
Cupriavidus , Praguicidas , Poluentes do Solo , Zeolitas , Biodegradação Ambiental , Biofilmes , RNA Ribossômico 16S , Microbiologia do Solo
16.
Front Microbiol ; 12: 742000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912306

RESUMO

The demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants.

17.
Front Microbiol ; 12: 742039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803959

RESUMO

Chlordecone (CLD) is a very persistent synthetic organochlorine pesticide found in the French West Indies. Recently published work has demonstrated the potential of zero-valent iron to dechlorinate CLD by in situ chemical reduction (ISCR) in soils under water-saturated conditions, forming mono- to penta-dechlorinated CLD transformation products. These transformation products are more mobile than CLD and less toxic; however, nothing is known about their further degradation, although increasing evidence of CLD biodegradation by bacteria is being found. The present study began with the enrichment from wastewater sludge of a CLD-transforming community which was then inoculated into fresh media in the presence of either CLD or two of the main ISCR transformation products, 10-monohydroCLD (-1Cl-CLD) and tri-hydroCLD (-3Cl-CLD). Carried out in triplicate batches and incubated at 38°C under anoxic conditions and in the dark, the cultures were sampled regularly during 3 months and analyzed for CLD, -1Cl-CLD, -3Cl-CLD, and possible transformation products by gas chromatography coupled to mass spectrometry. All batches showed a decrease in the amended substrates (CLD or hydroCLD). CLD degradation occurred with concomitant formation of a nine-carbon compound (pentachloroindene) and two sulfur-containing transformation products (chlordecthiol, CLD-SH; methyl chlordecsulfide, CLD-SCH3), demonstrating competing transformation pathways. In contrast, -1Cl-CLD and -3Cl-CLD only underwent a sequential reductive sulfidation/S-methylation process resulting in -1Cl-CLD-SH and -1Cl-CLD-SCH3 on the one hand, and -3Cl-CLD-SH, -3Cl-CLD-SCH3 on the other hand. Some sulfur-containing transformation products have been reported previously with single bacterial strains, but never in the presence of a complex microbial community. At the end of the experiment, bacterial and archaeal populations were investigated by 16S rRNA gene amplicon sequencing. The observed diversity was mostly similar in the CLD and -1Cl-CLD conditions to the inoculum with a dominant archaea genus, Methanobacterium, and four OTU affiliated to bacteria, identified at the family (Spirochaetaceae) or genus level (Desulfovibrio, Aminobacterium, and Soehngenia). On the other hand, in the -3Cl-CLD condition, although the same OTU were found, Clostridium sensu stricto 7, Candidatus Cloacimonas, and Proteiniphilum were also present at > 2% sequences. Presence of methanogens and sulfate-reducing bacteria could contribute to sulfidation and S-methylation biotransformations. Overall, these results contribute to increasing our knowledge on the biodegradability of CLD and its transformation products, helping to progress toward effective remediation solutions.

18.
J Contam Hydrol ; 241: 103813, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33906024

RESUMO

Nitrate contamination of groundwater remains a major concern despite all the measures and efforts undertaken over the last decades to protect water resources. We focused on a small catchment in Brittany (France) facing nitrate pollution with concentrations over the European drinking water standard of 50 mg.L-1. This is a common situation in catchments where - supposedly effective - measures were applied for reducing the transfer of N to groundwater. At the scale of this small (~100 ha) basement aquifer, nitrate concentrations are very heterogeneous in the groundwater, sampled up to 15-20 m below the soil surface in several observation wells (hereafter referred as piezometers) and up to 110 m deep in a borehole drilled through a faulted area near the Spring (outlet of the catchment). We used complementary and robust approaches for exploring and constraining the driving parameters of nitrate transfer and distribution in groundwater. Detailed geological work and a geophysical electrical resistivity tomography survey identified the lithologies, tectonic structures and weathering layers. This highlighted a complex geological structure with several compartments delimited by faults, as well as the highly variable thickness of the weathered layer. It also illustrated the heterogeneity of the hydrosystem, some compartments appearing to be disconnected from the general groundwater flow. This was confirmed by geochemical analyses and by the mean apparent groundwater residence time based on CFCs-SF6 and noble-gas analyses, locally revealing old and nitrate-free groundwater, and very old water with a recharge temperature below than the current average temperature in the area, reflecting water dating back to the last period of glaciation (-19 to -17 ky). Nitrate isotopes clearly showed denitrification processes in a few piezometers, which was generally supported by microbiology and molecular biology results. This highlighted the presence of functional genes involved in denitrification as well as a capacity of the groundwater microbial community to denitrify when in situ conditions are favourable. This type of combined approach - covering chemistry, isotopic methods, dissolved gases, microbiological activity, geophysics and hydrogeology - appears to be indispensable for implementing the most relevant programme of measures and for accurately assessing their effectiveness, notably by considering the timeframe between implementation of the measures and their impact on groundwater quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Isótopos , Nitratos/análise , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 409: 124580, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248819

RESUMO

Agricultural soils can contain high arsenic (As) concentrations due to specific geological contexts or pollution. Fertilizer amendments could influence As speciation and mobility thus increasing its transfer to crops and its toxicity. In the present study, field-relevant amounts of fertilizers were applied to soils from a cultivated field that was a former ammunition-burning site. Potassium phosphate (KP), ammonium sulfate and organic matter (OM) were applied to these soils in laboratory experiments to assess their impact on As leaching, bioavailability to Lactuca sativa and microbial parameters. None of the fertilizers markedly influenced As speciation and mobility, although trends showed an increase of mobility with KP and a decrease of mobility with ammonium sulfate. Moreover, KP induced a small increase of As in Lactuca sativa, and the polluted soil amended with ammonium sulfate was significantly less phytotoxic than the un-amended soil. Most probable numbers of AsIII-oxidizing microbes and AsIII-oxidizing activity were strongly linked to As levels in water and soils. Ammonium sulfate negatively affected AsIII-oxidizing activity in the un-polluted soil. Whereas no significant effect on As speciation in water could be detected, amendments may have an impact in the long term.

20.
Sci Total Environ ; 763: 142950, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127155

RESUMO

Chlorinated ethenes (CEs) are most problematic pollutants in groundwater. Dehalogenating bacteria, and in particular organohalide-respiring bacteria (OHRB), can transform PCE to ethene under anaerobic conditions, and thus contribute to bioremediation of contaminated sites. Current approaches to characterize in situ biodegradation of CEs include hydrochemical analyses, quantification of the abundance of key species (e.g. Dehalococcoides mccartyi) and dehalogenase genes (pceA, vcrA, bvcA and tceA) involved in different steps of organohalide respiration (OHR) by qPCR, and compound-specific isotope analysis (CSIA) of CEs. Here we combined these approaches with sequencing of 16S rRNA gene amplicons to consider both OHRB and bacterial taxa involved in CE transformation at a multi-contaminated site. Integrated analysis of hydrogeochemical characteristics, gene abundances and bacterial diversity shows that bacterial diversity and OHRB mainly correlated with hydrogeochemical conditions, suggesting that pollutant exposure acts as a central driver of bacterial diversity. CSIA, abundances of four reductive dehalogenase encoding genes and the prevalence of Dehalococcoides highlighted sustained PCE, DCE and VC degradation in several wells of the polluted plume. These results suggest that bacterial taxa associated with OHR play an essential role in natural attenuation of CEs, and that representatives of taxa including Dehalobacterium and Desulfosporosinus co-occur with Dehalococcoides. Overall, our study emphasizes the benefits of combining several approaches to evaluate the interplay between the dynamics of bacterial diversity in CE-polluted plumes and in situ degradation of CEs, and to contribute to a more robust assessment of natural attenuation at multi-polluted sites.


Assuntos
Chloroflexi , Água Subterrânea , Poluentes Químicos da Água , Bactérias/genética , Biodegradação Ambiental , Chloroflexi/genética , Etilenos , Isótopos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA