Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Ann Bot ; 120(2): 245-255, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137705

RESUMO

Background and Aims: To provide additional information to the many phylogenetic analyses conducted within Hordeum , here the origin and interspecific affinities of the allotetraploids Hordeum secalinum and Hordeum capense were analysed by molecular karyotyping. Methods: Karyotypes were determined using genomic in situ hybridization (GISH) to distinguish the sub-genomes and , plus fluorescence in situ hybridization (FISH)/non-denaturing (ND)-FISH to determine the distribution of ten tandem repetitive DNA sequences and thus provide chromosome markers. Key Results: Each chromosome pair in the six accessions analysed was identified, allowing the establishment of homologous and putative homeologous relationships. The low-level polymorphism observed among the H. secalinum accessions contrasted with the divergence recorded for the sub-genome of the H. capense accessions. Although accession H335 carries an intergenomic translocation, its chromosome structure was indistinguishable from that of H. secalinum . Conclusion: Hordeum secalinum and H. capense accession H335 share a hybrid origin involving Hordeum marinum subsp. gussoneanum as the genome donor and an unidentified genome progenitor. Hordeum capense accession BCC2062 either diverged, with remodelling of the sub-genome, or its genome was donated by a now extinct ancestor. A scheme of probable evolution shows the intricate pattern of relationships among the Hordeum species carrying the genome (including all H. marinum taxa and the hexaploid Hordeum brachyantherum ).


Assuntos
Genoma de Planta , Hordeum/classificação , Cariotipagem , Filogenia , Poliploidia , Evolução Biológica , Hordeum/genética , Hibridização in Situ Fluorescente
2.
Mol Phylogenet Evol ; 97: 107-119, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26790585

RESUMO

Hordeum brachyantherum Nevski includes two subspecies: the diploid (2×) subsp. californicum, and subsp. brachyantherum, which itself includes a tetraploid (4×) and a hexaploid (6×) cytotype. The phylogenetic relationships between these taxa and the origin of the polyploids remain controversial. To provide additional information to the many molecular phylogenetic analyses conducted within Hordeum, FISH-based karyotypes were produced for all subspecies/cytotypes within H. brachyantherum. Chromosomes of H. roshevitzii and H. marinum subsp. gussoneanum were also analysed since these species are potentially involved in the origin of the polyploids. For karyotyping, ten repetitive DNA sequences were screened to indentify repeats showing sufficient diversity in terms of copy number and localisation that they might serve as physical markers for distinguishing between each mitotic chromosome pair in all accessions. Genomic in situ hybridisation (GISH) was used to distinguish between subgenomes in polyploids. The karyotype maps allowed the assessment of the chromosomal diversity within species/cytotypes and the identification of possibly homoeologous chromosomes. The results show a wide divergence between the chromosomes of subsp. californicum and H. roshevitzii, and with their supposed derivatives in subsp. brachyantherum 4×. One of the three subgenomes of subsp. brachyantherum 6× is derived from subsp. gussoneanum with no genomic reorganisation (i.e., neither amplification nor loss of the repetitive DNA sequences analysed). It is generally accepted that subsp. brachyantherum 4× is the other progenitor of subsp. brachyantherum 6×, but the present results suggest this to be unlikely. The present findings thus show the cytogenetic diversity and genomic structure of H. brachyantherum, and reveal its complex evolutionary history, in which chromosomal diversification and allopolyploidy have played important roles.


Assuntos
Hordeum/classificação , Hordeum/genética , Filogenia , Poliploidia , Cromossomos de Plantas/genética , DNA de Plantas/genética , Diploide , Evolução Molecular , Genoma de Planta/genética , Genômica , Cariótipo , Tetraploidia
3.
Mol Biol Rep ; 41(10): 6525-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24985981

RESUMO

Interspecific comparative studies require that expression data be comparable among species, and when species with different levels of ploidy are contemplated the relative expression per cell should be obtained for accurate comparisons to be made. Quantitative reverse-transcription-PCR is the most popular and sensitive technique for the detection and quantification of mRNA in gene expression analysis. In recent years it has become clear that the choice of reference genes for the normalization of expression data is very important. Several studies have shown that the expression of the traditional housekeeping genes varies under certain situations; their use as reference genes in quantitative PCR assays can therefore lead to errors when interpreting the relative expression of target genes. Normalizing with respect to endogenous genes showing a constant level of expression per cell across species, however, provides an easy way of obtaining comparable expression data for other genes in those species. In this work, the validity of several candidate genes was examined across four diploid and polyploid species of the genera Triticum and Aegilops. Candidate reference genes were chosen among the traditional housekeeping genes used in quantitative PCR analysis, as well as others found to have stable levels of expression under different conditions in other studies. After the analyses, candidate genes were gathered into two groups according to the different levels of expression per cell seen in polyploid species. For the four species studied, two genes suitable for normalization procedures in interspecific studies were identified: cell division control protein and malate dehydrogenase. Both showed a constant number of transcripts per cell, independent of the level of ploidy.


Assuntos
Expressão Gênica , Ploidias , Genes Essenciais , Genes de Plantas , Estabilidade de RNA , Triticum/genética
4.
Plant J ; 69(3): 377-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21974774

RESUMO

Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Sintenia , Triticum/genética , DNA de Plantas/genética , Genoma de Planta , Análise de Sequência de DNA
5.
Theor Appl Genet ; 126(4): 949-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23242107

RESUMO

Non-denaturing FISH (ND-FISH) was used to compare the distribution of four simple sequence repeats (SSRs)-(AG) n , (AAG) n , (ACT) n and (ATC) n -in somatic root tip metaphase spreads of 12 barley (H. vulgare ssp. vulgare) cultivars, seven lines of their wild progenitor H. vulgare ssp. spontaneum, and four lines of their close relative H. bulbosum, to determine whether the range of molecular diversity shown by these highly polymorphic sequences is reflected at the chromosome level. In both, the cultivated and wild barleys, clusters of AG and ATC repeats were invariant. In contrast, clusters of AAG and ACT showed polymorphism. Karyotypes were prepared after the identification of their seven pairs of homologous chromosomes. Variation between these homologues was only observed in one wild accession that showed the segregation of a reciprocal translocation involving chromosomes 5H and 7H. The two subspecies of H. vulgare analysed were no different in terms of their SSRs. Only AAG repeats were found clustered strongly on the chromosomes of all lines of H. bulbosum examined. Wide variation was seen between homologous chromosomes within and across these lines. These results are the first to provide insight into the cytogenetic diversity of SSRs in barley and its closest relatives. Differences in the abundance and distribution of each SSR analysed, between H. vulgare and H. bulbosum, suggest that these species do not share the same H genome, and support the idea that these species are not very closely related. Southern blotting experiments revealed the complex organization of these SSRs, supporting the findings made with ND-FISH.


Assuntos
Variação Genética , Genoma de Planta/genética , Hordeum/genética , Repetições de Microssatélites/genética , Southern Blotting , Hibridização in Situ Fluorescente , Cariotipagem , Meristema/genética , Especificidade da Espécie
6.
Ann Bot ; 112(9): 1845-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24197750

RESUMO

BACKGROUND AND AIMS: Hordeum marinum is a species complex that includes the diploid subspecies marinum and both diploid and tetraploid forms of gussoneanum. Their relationships, the rank of the taxa and the origin of the polyploid forms remain points of debate. The present work reports a comparative karyotype analysis of six H. marinum accessions representing all taxa and cytotypes. METHODS: Karyotypes were determined by analysing the chromosomal distribution of several tandemly repeated sequences, including the Triticeae cloned probes pTa71, pTa794, pAs1 and pSc119·2 and the simple sequence repeats (SSRs) (AG)10, (AAC)5, (AAG)5, (ACT)5 and (ATC)5. KEY RESULTS: The identification of each chromosome pair in all subspecies and cytotypes is reported for the first time. Homologous relationships are also established. Wide karyotypic differences were detected within marinum accessions. Specific chromosomal markers characterized and differentiated the genomes of marinum and diploid gussoneanum. Two subgenomes were detected in the tetraploids. One of these had the same chromosome complement as diploid gussoneanum; the second subgenome, although similar to the chromosome complement of diploid H. marinum sensu lato, appeared to have no counterpart in the marinum accessions analysed here. CONCLUSIONS: The tetraploid forms of gussoneanum appear to have come about through a cross between a diploid gussoneanum progenitor and a second, related-but unidentified-diploid ancestor. The results reveal the genome structure of the different H. marinum taxa and demonstrate the allopolyploid origin of the tetraploid forms of gussoneanum.


Assuntos
Evolução Biológica , Hordeum/genética , Diploide , Cariótipo , Mapeamento Físico do Cromossomo , Tetraploidia
7.
BMC Genomics ; 12: 205, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521504

RESUMO

BACKGROUND: In recent years, substantial progress has been made in understanding the organization of sequences in heterochromatin regions containing single-copy genes and transposable elements. However, the sequence and organization of tandem repeat DNA sequences, which are by far the majority fraction of D. melanogaster heterochromatin, are little understood. RESULTS: This paper reports that the heterochromatin, as well as containing long tandem arrays of pentanucleotide satellites (AAGAG, AAGAC, AATAT, AATAC and AACAC), is also enriched in other simple sequence repeats (SSRs) such as A, AC, AG, AAG, ACT, GATA and GACA. Non-denaturing FISH (ND-FISH) showed these SSRs to localize to the chromocentre of polytene chromosomes, and was used to map them on mitotic chromosomes. Different distributions were detected ranging from single heterochromatic clusters to complex combinations on different chromosomes. ND-FISH performed on extended DNA fibres, along with Southern blotting, showed the complex organization of these heterochromatin sequences in long tracts, and revealed subclusters of SSRs (several kilobase in length) flanked by other DNA sequences. The chromosomal characterization of C, AAC, AGG, AAT, CCG, ACG, AGC, ATC and ACC provided further detailed information on the SSR content of D. melanogaster at the whole genome level. CONCLUSION: These data clearly show the variation in the abundance of different SSR motifs and reveal their non-random distribution within and between chromosomes. The greater representation of certain SSRs in D. melanogaster heterochromatin suggests that its complexity may be greater than previously thought.


Assuntos
Drosophila melanogaster/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , Repetições Minissatélites/genética , Animais , Sequência de Bases , Cromossomos de Insetos/genética , DNA/química , DNA/genética , Repetições de Dinucleotídeos/genética , Desnaturação de Ácido Nucleico , Repetições de Trinucleotídeos/genética
8.
Chromosoma ; 119(5): 495-503, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20393739

RESUMO

Simple Sequence Repeats (SSRs) are known to be scattered and present in high number in eukaryotic genomes. We demonstrate that dye-labeled oligodeoxyribonucleotides with repeated mono-, di-, tri, or tetranucleotide motifs (15-20 nucleotides in length) have an unexpected ability to recognize SSR target sequences in non-denatured chromosomes. The results show that all these probes are able to invade chromosomes, independent of the size of the repeat motif, their nucleotide sequence, or their ability to form alternative B-DNA structures such as triplex DNA. This novel and remarkable property of binding SSR oligonucleotides to duplex DNA targets permitted the development of a non-denaturing fluorescence in situ hybridization method that quickly and efficiently detects SSR-enriched chromosome regions in mitotic, meiotic, and polytene chromosome spreads of different model organisms. These results have implications for genome analysis and for investigating the roles of SSRs in chromosome structure and function.


Assuntos
Cromossomos de Plantas/química , Hibridização in Situ Fluorescente/métodos , Repetições de Microssatélites , Animais , DNA , Drosophila melanogaster/genética , Hordeum/genética , Sondas de Oligonucleotídeos
9.
Chromosome Res ; 17(6): 755-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19669910

RESUMO

We report a new technique-nondenaturing FISH (ND-FISH)-for the rapid detection of plant telomeres without the need for prior denaturation of the chromosomes. In its development, two modified, synthetic oligonucleotides, 21 nt in length, fluorescently labelled at their 5' and 3' ends and complementary to either the cytidine-rich (C(3)TA(3)) or guanosine-rich (T(3)AG(3)) telomeric DNA strands, were used as probes. The high binding affinity of these probes and the short hybridization time required allows the visualization of plant telomeres in less than an hour. In tests, both probes gave strong signals visualized as double spots at both chromosome ends; this was true of both the mitotic and meiotic chromosomes of barley, wheat, rye, maize, Brachypodium distachyon and Rhoeo spathacea. They were also able to detect telomere motifs at certain intercalary sites in the chromosomes of R. spathacea. To investigate the nature of the target structures detected, the chromosomes were treated with RNase A and single strand-specific nuclease S1 before ND-FISH experiments. Signal formation was resistant to standard enzymatic treatment, but sensitive when much higher enzyme concentrations were used. The results are discussed in relation to current knowledge of telomere structure.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Raízes de Plantas/genética , Telômero/genética , Cromossomos de Plantas/ultraestrutura , Cariotipagem , Raízes de Plantas/crescimento & desenvolvimento
10.
Int J Infect Dis ; 97: 290-292, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32553720

RESUMO

A relationship between the infecting dose and the risk of disease severity has not been demonstrated for SARS-CoV-2 infection. Here, we report three clusters of individuals that were potentially exposed to distinct inoculum in Madrid. Overall each group developed divergent clinical forms of COVID-19. Our data support that a greater viral inoculum at the time of SARS-CoV-2 exposure might determine a higher risk of severe COVID-19.


Assuntos
Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Carga Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Espanha/epidemiologia , Fatores de Tempo , Virulência
11.
Sci Rep ; 6: 36665, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819354

RESUMO

Repetitive DNA is widespread in eukaryotic genomes, in some cases making up more than 80% of the total. SSRs are a type of repetitive DNA formed by short motifs repeated in tandem arrays. In some species, SSRs may be organized into long stretches, usually associated with the constitutive heterochromatin. Variation in repeats can alter the expression of genes, and changes in the number of repeats have been linked to certain human diseases. Unfortunately, the molecular characterization of these repeats has been hampered by technical limitations related to cloning and sequencing. Indeed, most sequenced genomes contain gaps owing to repetitive DNA-related assembly difficulties. This paper reports an alternative method for sequencing of long stretches of repetitive DNA based on the combined use of 1) a linear vector to stabilize the cloning process, and 2) the use of exonuclease III for obtaining progressive deletions of SSR-rich fragments. This strategy allowed the sequencing of a fragment containing a stretch of 6.2 kb of continuous SSRs. To demonstrate that this procedure can sequence other kinds of repetitive DNA, it was used to examine a 4.5 kb fragment containing a cluster of 15 repeats of the 5S rRNA gene of barley.


Assuntos
Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Sequência Consenso , Eletroforese , Hordeum/genética
12.
PLoS One ; 8(12): e81385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349062

RESUMO

Hordeum murinum L. is a species complex composed of related taxa, including the subspecies glaucum, murinum and leporinum. However, the phylogenetic relationships between the different taxa and their cytotypes, and the origin of the polyploid forms, remain points of controversy. The present work reports a comparative karyotype analysis of seven accessions of the H. murinum complex representing all subspecies and cytotypes. The karyotypes were determined by examining the distribution of the repetitive Triticeae DNA sequences pTa71, pTa794, pSc119.2, pAs1 and pHch950, the simple sequence repeats (SSRs) (AG)10, (AAC)5, (AAG)5, (ACT)5, (ATC)5, and (CCCTAAA)3 via in situ hybridization. The chromosomes of the three subgenomes involved in the polyploids were identified. All tetraploids of all subspecies shared the same two subgenomes (thus suggesting them to in fact belong to the same taxon), the result of hybridization between two diploid ancestors. One of the subgenomes present in all tetraploids of all subspecies was found to be very similar (though not identical) to the chromosome complement of the diploid glaucum. The hexaploid form of leporinum came about through a cross between a tetraploid and a third diploid form. Exclusively bivalent associations among homologous chromosomes were observed when analyzing pollen mother cells of tetraploid taxa. In conclusion, the present results identify all the individual chromosomes within the H. murinum complex, reveal its genome structure and phylogeny, and explain the appearance of the different cytotypes. Three cryptic species are proposed according to ploidy level that may deserve full taxonomic recognition.


Assuntos
Cromossomos/genética , Genoma de Planta/genética , Hordeum/genética , Evolução Biológica , Cariótipo
13.
Genome ; 51(10): 809-15, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18923532

RESUMO

In plants the marker sequences used to identify chromosomes are mainly repetitive DNA probes. Simple sequence repeats (SSRs) are major components of many plant genomes and could be good markers for chromosome identification. In a previous work, we reported the physical distribution of 4 oligonucleotides, (AG)12, (CAT)5, (AAC)5, and (AAG)5, on Triticum aestivum L. chromosomes. The distinctive distribution pattern found suggested that SSR in situ hybridization is useful as a diagnostic tool in wheat cytogenetics. To check whether that finding is generally applicable, we analyzed the chromosomal distribution of the rest of the 14 possible classes of di- and tri-nucleotide repeats by FISH. A detailed knowledge of the sequence content of hexaploid wheat chromatin was acquired based on the hybridization signals, which also provide a rich set of chromosome markers for chromosome identification. Except for (AT)10 and (GC)10, for which the chromosomal distribution could not be accurately determined, and (AC)8 and (GCC)5, which were found dispersed throughout the chromosomes, the remaining repeats were observed as clusters on specific chromosome sites. (AGG)5, (CAC)5, (ACG)5, (AAT)5, and (CAG)5 exhibited a preferential distribution in the pericentromeric regions of the B genome chromosomes. The richest patterns of intercalary signals on several A and B genome chromosomes were produced by (ACT)5. A karyotype based on the SSR probes providing the best FISH patterns was constructed for T. aestivum 'Chinese Spring'.


Assuntos
Cromossomos de Plantas/química , Hibridização in Situ Fluorescente/métodos , Repetições Minissatélites , Mapeamento Físico do Cromossomo/métodos , Triticum/genética , Sondas de DNA/análise , Repetições de Dinucleotídeos/fisiologia , Metáfase , Repetições Minissatélites/genética , Repetições de Trinucleotídeos/genética
14.
Chromosome Res ; 15(6): 711-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17874212

RESUMO

This paper is the first to report the long-range organization of all possible classes of trinucleotide motifs in a higher plant genome. Fluorescent in situ hybridization (FISH), employing the synthetic oligonucleotides (AAC)5, (AAG)5, (AAT)5, (AGG)5, (CAC)5, (CAT)5, (CAG)5, (ACT)5, (ACG)5 and (GCC)5, was used to characterize the nonrandom and motif-dependent distribution of tandem arrays of trinucleotide repeats in the metaphase chromosomes and interphase nuclei of barley (Hordeum vulgare L.). This provided detailed information on the sequence content of barley chromatin and allowed the saturation of the physical map of all barley chromosomes. The following conclusions were also drawn: (1) Except for (AAT)5 and (GCC)5, the studied repetitive motifs have a characteristic pattern of distribution in terms of their in situ FISH signals. Some permit the accurate identification of individual chromosomes. (2) (CAG)5, (CAT)5 and (ACT)5 are not found in all barley chromosomes. (3) With the exception of (ACT)5, the remaining trinucleotide repeats occur predominantly in the heterochromatin and are largely absent from the euchromatic regions. Moreover, (CAC)5, (ACG)5 and (CAG)5 are exclusively concentrated in the centromeres. The employment of simple synthetic probes for the identification of chromosomes and genomic characterization, and their importance in studies on genome organization, function and evolution, are discussed.


Assuntos
Cromossomos de Plantas/ultraestrutura , Hordeum/genética , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos/genética , Motivos de Aminoácidos , Análise por Conglomerados , Eucromatina/genética , Evolução Molecular , Genes de Plantas , Genoma de Planta , Genômica , Heterocromatina/genética , Hibridização in Situ Fluorescente , Modelos Genéticos , Mapeamento Físico do Cromossomo
15.
Theor Appl Genet ; 114(6): 985-99, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17262197

RESUMO

The MRE11 protein is a component of the highly conserved MRN complex, along with RAD50 and NBS1. This complex is crucial in the repair of breaks in double stranded DNA, and is involved in many other cell processes. The present paper reports the molecular characterization of Mre11 gene in all three genomes of wheat, making use of the diploid species Triticum monococcum (genome A) and Aegilops Tauschii (genome D), the tetraploid T. turgidum (genomes A and B), and the hexaploid T. aestivum (genomes A, B and D). The genomic sequences characterized ranged from 4,662 to 4,766 bp in length; the cDNA corresponding to the processed mRNA was 2,440-2,510 bp long. In all cases, Mre11 coded for a highly conserved protein of 699 amino acids with a structure involving 22 exons. Mre11 expression was determined by real-time PCR in all the species analysed. The tetraploid species showed an expression similar to that of the diploid Ae. tauschii and lower than that of T. monococcum. Stronger expression was detected in the hexaploid T. aestivum. The SSCP technique was modified by introducing fluorescent labelling to the procedure in order to analyse the expression of the different Mre11 genes (i.e., those belonging to the different genomes) in the polyploid species. In both polyploids, the Mre11 gene belonging to the B genome was the least expressed. This probably reflects a first step in the process of silencing duplicate genes after polyploidization.


Assuntos
Inativação Gênica , Genes de Plantas , Poliploidia , Triticum/genética , Triticum/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Southern Blotting , DNA Complementar , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Éxons , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , RNA Mensageiro/química , RNA de Plantas/química , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Triticum/classificação
16.
Genome ; 48(6): 999-1009, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16391669

RESUMO

Quantitative trait loci (QTLs) for androgenetic response were mapped in a doubled haploid (DH) population derived from the F1 hybrid of 2 unrelated varieties of triticale, 'Torote' and 'Presto'. A molecular marker linkage map of this cross was previously constructed using 73 DH lines. This map contains 356 markers (18 random amplified 5 polymorphic DNA, 40 random amplified microsatellite polymorphics, 276 amplified fragment length polymorphisms, and 22 simple sequence repeats) and was used for QTL analysis. The genome was well covered, and of the markers analysed, 336 were located in 21 linkage groups (81.9%) identified using SSR markers. The map covered a total length of 2465.4 cM with an average of 1 marker for each 6.9 cM. The distribution of the markers was not homogeneous across the 3 genomes, with 50.7% detected in the R genome. Several QTLs were found for the following variables related to the androgenetic response: number of embryos/100 anthers; plants regenerated from 100 embryos; number of green plants/total number of plants; and number of green plants/1000 anthers. Two were detected on chromosome 6B and 4R, which together had a 30% total influence on the induction of embryos. Another was found on 6B and on the unidentified LG1; these influenced the production of total plants from haploid embryo cultures. One QTL on chromosome 3R determined the photosynthetic viability of the haploid plantlets regenerated from microspores. Other QTLs were found on chromosomes 1B, 1R, 4R, and 7R, which helped the control of the final androgenetic response (the number of plantlets obtained for every 1000 anthers cultured).


Assuntos
Mapeamento Cromossômico , Grão Comestível/genética , Locos de Características Quantitativas , Secale/genética , Marcadores Genéticos , Hibridização Genética
17.
Genome ; 48(1): 154-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15729407

RESUMO

Chromosome in situ hybridization (FISH and GISH) is a powerful tool for determining the chromosomal location of specific sequences and for analysing genome organization and evolution. Tricepiro (2n = 6x = 42) is a synthetic cereal obtained by G. Covas in Argentina (1972), which crosses hexaploid triticale (2n = 6x = 42) and octoploid Trigopiro (2n = 8x = 56). Several years of breeding produced a forage crop with valuable characteristics from Secale, Triticum, and Thinopyrum. The aim of this work is to analyse the real genomic constitution of this important synthetic crop. In situ hybridization using total DNA of Secale, Triticum, and Thinopyrum as a probe (GISH) labelled with biotin and (or) digoxigenin showed that tricepiro is composed of 14 rye chromosomes and 28 wheat chromosomes. Small zones of introgression of Thinopyrum on wheat chromosomes were detected. The FISH using the rye repetitive DNA probe pSc 119.2 labelled with biotin let us characterize the seven pairs of rye chromosomes. Moreover, several wheat chromosomes belonging to A and B genomes were distinguished. Therefore, tricepiro is a synthetic hexaploid (2n = 6x = 42) being AABBRR in its genomic composition, with zones of introgression of Thinopyrum in the A genome of wheat.


Assuntos
Cromossomos de Plantas , Grão Comestível/genética , Genoma de Planta , Hibridização in Situ Fluorescente , Mitose/genética
18.
Genome ; 45(2): 339-47, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11962631

RESUMO

The sequences of the chitinase gene (Chi-26) and the internal transcribed spacer of 18S - 5.8S - 26S rDNA (ITS1) were determined to analyze the phylogenetic relationships among species representing the four basic genomes of the genus Hordeum. Grouping analysis based on data for Chi-26 gene sequences placed Hordeum secalinum (H genome) near the Hordeum murinum complex (Xu genome), and Hordeum bulbosum distant from the other species that carried the I genome. ITS sequence data showed the expected grouping based on the genome classification of the species studied. Different sequences of ITS were detected even in the genomes of the diploid species. The results are interpreted in terms of defective or unfinished concerted evolution processes in each taxon.


Assuntos
Quitinases/genética , DNA Espaçador Ribossômico/genética , Hordeum/enzimologia , Hordeum/genética , Filogenia , Antifúngicos , Sequência de Bases , Clonagem Molecular , DNA de Plantas/genética , Diploide , Evolução Molecular , Genes de Plantas , Variação Genética , Genoma de Planta , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Transcrição Gênica
19.
Genome ; 45(6): 1142-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12502260

RESUMO

The use of consensus chloroplast microsatellites primers for dicotyledonous chloroplast genomes revealed the existence of intra and interspecific length variation within the genus Vitis. Three chloroplast microsatellite loci were found to be polymorphic in samples of Vitis vinifera, Vitis berlandieri, Vitis riparia, and Vitis rupestris out of a total of 10 consensus primer pairs tested. These polymorphisms were always due to a variable number of mononucleotide residues within A and (or) T stretches in the amplified regions. Chloroplast microsatellite polymorphisms were used to demonstrate the maternal inheritance of chloroplast in V. vinifera and to characterise the chloroplast haplotypes present in wine grape cultivars of this species grown in Spain and Greece. The different distribution of haplotype frequencies in the two ends of the Mediterranean growth area suggests the existence of independent domestication events for grapevine.


Assuntos
Cloroplastos/genética , Polimorfismo Genético , Vitis/genética , Sequência de Bases , DNA de Plantas , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA