Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 65, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678291

RESUMO

BACKGROUND: Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS: We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS: Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS: We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.


Assuntos
Retroalimentação Sensorial , , Percepção do Tato , Humanos , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Pé/fisiologia , Percepção do Tato/fisiologia , Adulto Jovem , Caminhada/fisiologia , Vibração , Tato/fisiologia
2.
Exp Brain Res ; 239(11): 3175-3188, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34424361

RESUMO

There is a steadily growing number of mobile communication systems that provide spatially encoded tactile information to the humans' torso. However, the increased use of such hands-off displays is currently not matched with or supported by systematic perceptual characterization of tactile spatial discrimination on the torso. Furthermore, there are currently no data testing spatial discrimination for dynamic force stimuli applied to the torso. In the present study, we measured tactile point localization (LOC) and tactile direction discrimination (DIR) on the thoracic spine using two unisex torso-worn tactile vests realized with arrays of 3 × 3 vibrotactile or force feedback actuators. We aimed to, first, evaluate and compare the spatial discrimination of vibrotactile and force stimulations on the thoracic spine and, second, to investigate the relationship between the LOC and DIR results across stimulations. Thirty-four healthy participants performed both tasks with both vests. Tactile accuracies for vibrotactile and force stimulations were 60.7% and 54.6% for the LOC task; 71.0% and 67.7% for the DIR task, respectively. Performance correlated positively with both stimulations, although accuracies were higher for the vibrotactile than for the force stimulation across tasks, arguably due to specific properties of vibrotactile stimulations. We observed comparable directional anisotropies in the LOC results for both stimulations; however, anisotropies in the DIR task were only observed with vibrotactile stimulations. We discuss our findings with respect to tactile perception research as well as their implications for the design of high-resolution torso-mounted tactile displays for spatial cueing.


Assuntos
Percepção do Tato , Vibração , Humanos , Coluna Vertebral , Tronco , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA