Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051106

RESUMO

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilserinas/metabolismo , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cultura Primária de Células , Transporte Proteico/fisiologia , Transdução de Sinais , Triglicerídeos/metabolismo
2.
BMC Med ; 22(1): 17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185624

RESUMO

BACKGROUND: Slower paces of aging are related to lower risk of developing diseases and premature death. Therefore, the greatest challenge of modern societies is to ensure that the increase in lifespan is accompanied by an increase in health span. To better understand the differences in human lifespan, new insight concerning the relationship between lifespan and the age of onset of diseases, and the ability to avoid them is needed. We aimed to comprehensively study, at a population-wide level, the sex-specific disease patterns associated with human lifespan. METHODS: Observational data from the SIDIAP database of a cohort of 482,058 individuals that died in Catalonia (Spain) at ages over 50 years old between the 1st of January 2006 and the 30th of June 2022 were included. The time to the onset of the first disease in multiple organ systems, the prevalence of escapers, the percentage of life free of disease, and their relationship with lifespan were evaluated considering sex-specific traits. RESULTS: In the study cohort, 50.4% of the participants were women and the mean lifespan was 83 years. The results show novel relationships between the age of onset of disease, health span, and lifespan. The key findings include: Firstly, the onset of both single and multisystem diseases is progressively delayed as lifespan increases. Secondly, the prevalence of escapers is lower in lifespans around life expectancy. Thirdly, the number of disease-free systems decreases until individuals reach lifespans around 87-88 years old, at which point it starts to increase. Furthermore, long-lived women are less susceptible to multisystem diseases. The associations between health span and lifespan are system-dependent, and disease onset and the percentage of life spent free of disease at the time of death contribute to explaining lifespan variability. Lastly, the study highlights significant system-specific disparities between women and men. CONCLUSIONS: Health interventions focused on delaying aging and age-related diseases should be the most effective in increasing not only lifespan but also health span. The findings of this research highlight the relevance of Electronic Health Records in studying the aging process and open up new possibilities in age-related disease prevention that should assist primary care professionals in devising individualized care and treatment plans.


Assuntos
Longevidade , Resiliência Psicológica , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Retrospectivos , Envelhecimento
3.
Alzheimers Dement ; 20(5): 3322-3333, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38534027

RESUMO

INTRODUCTION: Fatty acids (FAs) are the building blocks of complex lipids and signaling compounds; the role of the lipidome fatty acid profile (LFA) in AD progression remains unclear. METHODS: The LFA of plasma and cerebrospinal fluid (CSF) samples from 289 participants (103 AD patients, 92 MCI patients, and 94 controls) was determined by GC-FID. The MCI subjects were followed up for 58 ± 12.5 months. RESULTS: In controls, CSF has a more neuroprotective LFA than plasma. In CSF, a higher content of docosahexaenoic acid was associated with a reduced risk of MCI-to-AD progression. In plasma, higher oleic acid content was associated with lower risk of AD, MCI, and MCI-to-AD progression, whereas higher levels of vaccenic acid and docosahexaenoic acid were associated with greater risk of AD and MCI, and higher rate of MCI-to-AD progression, respectively. DISCUSSION: The circulating LFA is involved in the pathogenesis and progression of AD. HIGHLIGHTS: The lipidome fatty acid profile in CSF and plasma was markedly different. Higher levels of vaccenic acid and lower levels of oleic acid in plasma were associated with greater risk of Alzheimer's disease. In plasma, higher levels of oleic acid were associated with a reduced risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in CSF were associated with a lower risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in plasma were associated with a greater rate of MCI-to-AD progression.


Assuntos
Doença de Alzheimer , Progressão da Doença , Ácidos Graxos , Lipidômica , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Feminino , Ácidos Graxos/sangue , Ácidos Graxos/líquido cefalorraquidiano , Idoso , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/líquido cefalorraquidiano , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373236

RESUMO

During pregnancy, maternal polyunsaturated fatty acids (PUFA) are transferred to the fetus through the placenta by specific FA transporters (FATP). A higher perinatal exposure to n-6 over n-3 PUFA could be linked to excess fat mass and obesity development later in life. In this context, we aimed to assess the associations between long chain PUFAs (LC-PUFAs) (n-6, n-3, and n-6/n-3 ratios) measured in the placenta at term birth with obesity-related parameters in the offspring at 6 years of age and assess whether these associations are dependent on the placental relative expression of fatty acid transporters. As results, the PUFAn-6/PUFAn-3 ratio was 4/1, which scaled up to 15/1 when considering only the arachidonic acid/eicosapentaenoic acid ratio (AA/EPA ratio). Positive associations between the AA/EPA ratio and offspring's obesity risk parameters were found with weight-SDS, BMI-SDS, percent fat mass-SDS, visceral fat, and HOMA-IR (r from 0.204 to 0.375; all p < 0.05). These associations were more noticeable in those subjects with higher expression of fatty acid transporters. Therefore, in conclusion, a higher placental AA/EPA ratio is positively associated with offspring's visceral adiposity and obesity risk parameters, which become more apparent in subjects with higher expressions of placental FATPs. Our results support the potential role of n-6 and n-3 LC-PUFA in the fetal programming of obesity risk in childhood. For the present study, 113 healthy pregnant women were recruited during the first trimester of pregnancy and their offspring were followed up at 6 years of age. The fatty acid profiles and the expression of fatty acid transporters (FATP1 and FATP4) were analyzed from placental samples at birth. Associations between LC-PUFA (n-6, n-3, and n-6/n-3 ratios) and obesity risk parameters (weight, body mass index (BMI), percent fat mass, visceral fat, and homeostatic model assessment of insulin resistance (HOMA-IR)) in the offspring at 6 years of age were examined.


Assuntos
Ácidos Graxos Ômega-3 , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Placenta/metabolismo , Obesidade/etiologia , Obesidade/complicações , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos/metabolismo , Parto
5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955882

RESUMO

Decreased content and activity of the mechanistic target of rapamycin (mTOR) signalling pathway, as well as the mTOR complex 1 (mTORC1) itself, are key traits for animal species and human longevity. Since mTORC1 acts as a master regulator of intracellular metabolism, it is responsible, at least in part, for the longevous phenotype. Conversely, increased content and activity of mTOR signalling and mTORC1 are hallmarks of ageing. Additionally, constitutive and aberrant activity of mTORC1 is also found in age-related diseases such as Alzheimer's disease (AD) and cancer. The downstream processes regulated through this network are diverse, and depend upon nutrient availability. Hence, multiple nutritional strategies capable of regulating mTORC1 activity and, consequently, delaying the ageing process and the development of age-related diseases, are under continuous study. Among these, the restriction of calories is still the most studied and robust intervention capable of downregulating mTOR signalling and feasible for application in the human population.


Assuntos
Longevidade , Transdução de Sinais , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
6.
Gut ; 70(12): 2283-2296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33514598

RESUMO

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Assuntos
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Inibição Psicológica , Obesidade/complicações , Adulto , Idoso , Animais , Estudos Transversais , Fígado Gorduroso/microbiologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Transcriptoma
7.
J Neurochem ; 158(2): 482-499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905537

RESUMO

Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C ßI (PLCßI) and protein kinase CßII (PKCßII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/genética , Lipidômica , Idoso , Animais , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Diglicerídeos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Estresse Oxidativo , Projetos Piloto , Medula Espinal/citologia , Medula Espinal/metabolismo , Frações Subcelulares/metabolismo , Superóxido Dismutase-1
8.
Expert Rev Proteomics ; 18(5): 333-344, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34098823

RESUMO

INTRODUCTION: Human prefrontal cortex (hPFC) is a recent evolutionarily developed brain region involved in cognitive functions. Human cognitive functions decline during aging. Yet the molecular mechanisms underlying the functional deterioration of the neural cells of this brain region still remain to be fully described. AREAS COVERED: In this review, we explore the role of lipids in hPFC aging. Firstly, we briefly consider the approaches used to identify lipid species in brain tissue with special attention paid to a lipidomics analysis. Then, as the evolution process has conferred a specific lipid profile on the hPFC, we consider the lipidome of hPFC. In addition, the role of lipids in hPFC aging, and in particular, the cognitive decline associated with aging, is discussed. Finally, nutritional and pharmacological interventions designed to modulate this process are examined. It is suggested that the dysfunction of key cellular processes secondarily to the damage of lipid membrane underlies the cognitive decline of hPFC during aging. EXPERT OPINION: Lipidomics methods are and will continue to be key tools in the effort to gain additional insights into the aging of the human brain.


Assuntos
Envelhecimento , Lipidômica , Encéfalo , Humanos , Neurônios , Córtex Pré-Frontal
9.
Neuropathol Appl Neurobiol ; 47(4): 544-563, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33332650

RESUMO

AIM: Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS: We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS: Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION: Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Lobo Frontal/metabolismo , Metabolismo dos Lipídeos , Peroxissomos/metabolismo , Proteinopatias TDP-43/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34830402

RESUMO

Lipids are closely associated with brain structure and function. However, the potential changes in the lipidome induced by aging remain to be elucidated. In this study, we used chromatographic techniques and a mass spectrometry-based approach to evaluate age-associated changes in the lipidome of the frontal cortex and cerebellum obtained from adult male Wistar rats (8 months), aged male Wistar rats (26 months), and aged male Wistar rats submitted to a methionine restriction diet (MetR)-as an anti-aging intervention-for 8 weeks. The outcomes revealed that only small changes (about 10%) were observed in the lipidome profile in the cerebellum and frontal cortex during aging, and these changes differed, in some cases, between regions. Furthermore, a MetR diet partially reversed the effects of the aging process. Remarkably, the most affected lipid classes were ether-triacylglycerols, diacylglycerols, phosphatidylethanolamine N-methylated, plasmalogens, ceramides, and cholesterol esters. When the fatty acid profile was analyzed, we observed that the frontal cortex is highly preserved during aging and maintained under MetR, whereas in the cerebellum minor changes (increased monounsaturated and decreased polyunsaturated contents) were observed and not reversed by MetR. We conclude that the rat cerebellum and frontal cortex have efficient mechanisms to preserve the lipid profile of their cell membranes throughout their adult lifespan in order to maintain brain structure and function. A part of the small changes that take place during aging can be reversed with a MetR diet applied in old age.


Assuntos
Envelhecimento/genética , Lobo Frontal/metabolismo , Lipídeos/genética , Metionina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cromatografia , Lobo Frontal/patologia , Humanos , Lipidômica/normas , Espectrometria de Massas , Estresse Oxidativo/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA