Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502195

RESUMO

Piezoelectric vibration energy harvester (PVEH) is a promising device for sustainable power supply of wireless sensor nodes (WSNs). PVEH is resonant and generates power under constant frequency vibration excitation of mechanical equipment. However, it cannot output high power through off-resonance if it has frequency offset in manufacturing, assembly and use. To address this issue, this paper designs and optimizes a PVEH to harvest power specifically from grid transformer vibration at 100 Hz with high power density of 5.28 µWmm-3g-2. Some resonant frequency modulation methods of PVEH are discussed by theoretical analysis and experiment, such as load impedance, additional mass, glue filling, axial and transverse magnetic force frequency modulation. Finally, efficient energy harvesting of 6.1 V output in 0.0226 g acceleration is tested in grid transformer reactor field application. This research has practical value for the design and optimization process of tunable PVEH for a specific vibration source.


Assuntos
Modalidades de Fisioterapia , Vibração , Fenômenos Físicos , Aceleração , Comércio
2.
Nanomaterials (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38535686

RESUMO

Considering the magnetic shielding requirements of both geomagnetic field and 50 Hz power-line frequency in the complex working conditions of the power grid, an electromagnetic shielding system combining active and passive modes is proposed in this article. A three-dimensional Helmholtz coil with a magnetic shielding barrel nested inside is established by the COMSOL simulation tool, and the magnetic shielding efficiency of the system is analyzed. Comparing different materials, the simulation results indicate that permalloy alloy exhibits better shielding performance than pure iron and nickel materials. Additionally, the overall shielding efficiency of the shielding barrel increases linearly with the number of multiple layers. Under the combined active and passive electromagnetic shielding conditions, the system achieves a shielding efficiency of SE = 113.98 dB, demonstrating excellent performance in shielding both AC and DC interference magnetic fields. This study provides theoretical guidance for the construction of magnetic shielding systems in electromagnetic interference environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA