Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466391

RESUMO

: The new rigid planar ligand 2,5-bis(3-(pyridine-4-yl)phenyl)thiazolo[5,4-d]thiazole (BPPT) has been synthesized, which is an excellent building block for assembling coordination polymer. Under solvothermal reaction conditions, cadmium ion with BPPT in the presence of various carboxylic acids including (1,1'-biphenyl)-4,4'-dicarboxylic acid (BPDC), isophthalic acid (IP), and benzene-1,3,5-tricarboxylic acid (BTC) gave rise to three coordination complexes, viz, [Cd(BPPT)(BPDA)](BPPT)n (1), [Cd(BPPT) (IP)] (CH3OH) (2), and [Cd3(BPPT)3(BTC)2(H2O)2] (3). The structures of 1, 2, and 3 were characterized by single crystal X-ray diffraction. The IR spectra as well as thermogravimetric and luminescence properties were also investigated. Complex 1 is a two-dimensional (2D) network and further stretched to a 3D supramolecular structure through π-π stacking interaction. The complexes 2 and 3 show 3D framework. The complexes 1, 2, and 3 exhibited luminescence property at room temperature.


Assuntos
Cádmio/química , Polímeros/química , Complexos de Coordenação/química , Ácidos Dicarboxílicos/química , Ligação de Hidrogênio , Luminescência , Difração de Raios X
2.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799496

RESUMO

A novel 36-metallacrown-6 complex [CuL(N(CN)2)(PF6)]6∙0.5H2O 1 was achieved using a tridendate ligand, 1,4,7-triisopropyl-1,4,7-triazacyclononane (L), and a flexible ligand, dicyanamide in MeOH. The µ1,5 bridging models of the dicyanamide ligand linked the macrocycle to form in a specific size with the chair conformation. The anion was important to form this 36-metallacrown-6 complex, as change was obtained with the larger anion BPh4-, binuclear copper compound 2. The magnetic property indicates that slightly ferromagnetic interactions resulted from a superexchange mechanism. DNA binding properties were also studied. UV and fluorescence spectra showed that complex 1 could bind with DNA.


Assuntos
Cobre/química , Cianetos/química , DNA/química , Compostos Heterocíclicos/química , Compostos Organometálicos/química , Sítios de Ligação , Cristalografia por Raios X , Cianetos/síntese química , Compostos Heterocíclicos/síntese química , Campos Magnéticos , Conformação Molecular , Compostos Organometálicos/síntese química
3.
Environ Sci Pollut Res Int ; 28(34): 46877-46893, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254241

RESUMO

With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA