Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 18(3): 488-497, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27113728

RESUMO

Drug development is an expensive and time-consuming process; these could be reduced if the existing resources could be used to identify candidates for drug repurposing. This study sought to do this by text mining a large-scale literature repository to curate repurposed drug lists for different cancers. We devised a pattern-based relationship extraction method to extract disease-gene and gene-drug direct relationships from the literature. These direct relationships are used to infer indirect relationships using the ABC model. A gene-shared ranking method based on drug target similarity was then proposed to prioritize the indirect relationships. Our method of assessing drug target similarity correlated to existing anatomical therapeutic chemical code-based methods with a Pearson correlation coefficient of 0.9311. The indirect relationships ranking method achieved a significant mean average precision score of top 100 most common diseases. We also confirmed the suitability of candidates identified for repurposing as anticancer drugs by conducting a manual review of the literature and the clinical trials. Eventually, for visualization and enrichment of huge amount of repurposed drug information, a chord diagram was demonstrated to rapidly identify two novel indications for further biological evaluations.


Assuntos
Reposicionamento de Medicamentos , Mineração de Dados , Humanos
2.
J Bioinform Comput Biol ; 12(6): 1442008, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25385082

RESUMO

Protein-protein interactions (PPIs) are involved in the majority of biological processes. Identification of PPIs is therefore one of the key aims of biological research. Although there are many databases of PPIs, many other unidentified PPIs could be buried in the biomedical literature. Therefore, automated identification of PPIs from biomedical literature repositories could be used to discover otherwise hidden interactions. Search engines, such as Google, have been successfully applied to measure the relatedness among words. Inspired by such approaches, we propose a novel method to identify PPIs through semantic similarity measures among protein mentions. We define six semantic similarity measures as features based on the page counts retrieved from the MEDLINE database. A machine learning classifier, Random Forest, is trained using the above features. The proposed approach achieve an averaged micro-F of 71.28% and an averaged macro-F of 64.03% over five PPI corpora, an improvement over the results of using only the conventional co-occurrence feature (averaged micro-F of 68.79% and an averaged macro-F of 60.49%). A relation-word reinforcement further improves the averaged micro-F to 71.3% and averaged macro-F to 65.12%. Comparing the results of the current work with other studies on the AIMed corpus (ranging from 77.58% to 85.1% in micro-F, 62.18% to 76.27% in macro-F), we show that the proposed approach achieves micro-F of 81.88% and macro-F of 64.01% without the use of sophisticated feature extraction. Finally, we manually examine the newly discovered PPI pairs based on a literature review, and the results suggest that our approach could extract novel protein-protein interactions.


Assuntos
Mineração de Dados/métodos , Processamento de Linguagem Natural , Publicações Periódicas como Assunto , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Semântica , Inteligência Artificial , Sítios de Ligação , Reconhecimento Automatizado de Padrão/métodos , Ligação Proteica , Proteínas/química , Proteínas/classificação , Terminologia como Assunto , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA