Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 143(21): 3994-4002, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633990

RESUMO

Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas com Homeodomínio LIM/fisiologia , Cristalino/embriologia , Organogênese/genética , Neurônios Retinianos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Cristalino/metabolismo , Camundongos , Camundongos Transgênicos , Microftalmia/embriologia , Microftalmia/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios Retinianos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
2.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209587

RESUMO

Familial cases of myeloproliferative neoplasms (MPN) are relatively common, yet few inherited risk factors have been identified. Exome sequencing of a kindred with a familial cancer syndrome characterized by both MPN and melanoma produced a germline variant in the ERBB2/HER2 gene that co-segregates with disease. To further investigate whether germline ERBB2 variants contribute to MPN predisposition, the frequency of ERBB2 variants was analyzed in 1604 cases that underwent evaluation for hematologic malignancy, including 236 cases of MPN. MPN cases had a higher frequency of rare germline ERBB2 coding variants compared to non-MPN hematologic malignancies (8.9% vs. 4.1%, OR 2.4, 95% CI: 1.4 to 4.0, p = 0.0028) as well as cases without a blood cancer diagnosis that served as an internal control (8.9% vs. 2.7%, OR 3.5, 95% CI: 1.4 to 8.3, p = 0.0053). This finding was validated via comparison to an independent control cohort of 1587 cases without selection for hematologic malignancy (8.9% in MPN cases vs. 5.2% in controls, p = 0.040). The most frequent variant identified, ERBB2 c.1960A > G; p.I654V, was present in MPN cases at more than twice its expected frequency. These data indicate that rare germline coding variants in ERBB2 are associated with an increased risk for development of MPN. The ERBB2 gene is a novel susceptibility locus which likely contributes to cancer risk in combination with additional risk alleles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA