Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): m81-2, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23424426

RESUMO

In the title compound [Ru(2)(C(15)H(11)N(3))(2)(C(24)H(16)N(6))](PF(6))(4)·4CH(3)CN, two of the counter-ions and one of the solvent mol-ecules are disordered with occupancies for the major components between 0.57 (2) and 0.64 (1). The structure of the dinuclear tetracation exhibits significant distortion from planarity in the bridging 2,3,5,6-tetra-kis-(pyridin-2-yl)pyrazine (tppz) ligand, which has a saddle-like geometry with an average dihedral angle of 42.96 (18)° between adjacent pyridine rings. The metal-ligand coordination environment is nearly equivalent for the two Ru(II) atoms, which have a distorted octa-hedral geometry due to the restricted bite angle [157.57 (13)-159.28 (12)°] of their two mer-arranged tridendate ligands [2,2':6',2''-terpyridine (tpy) and tppz] orthogonal to each other. At the peripheral tpy ligands, the average Ru-N bond distance is 2.072 (4) Šfor the outer N atoms trans to each other (N(outer)) and 1.984 (1) Šfor the central N atoms (N(central)). At the bridging tppz ligand, the average metal-ligand distances are significantly shorter [2.058 (4) Šfor Ru-N(outer) and 1.965 (1) Šfor Ru-N(central)] as a result of both the geometric constraints and the stronger π-acceptor ability of the pyrazine-centered bridge. The dihedral angle between the two tpy planes is 27.11 (6)°. The intra-molecular linear distance between the two Ru atoms is 6.6102 (7) Å.

2.
Inorg Chem ; 51(3): 1345-58, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22273403

RESUMO

The first designed molecular catalyst for water oxidation is the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+). Although there is experimental evidence for extensive electronic coupling across the µ-oxo bridge, results of earlier DFT and CASSCF calculations provide a model with magnetic interactions of weak to moderately coupled Ru(III) ions across the µ-oxo bridge. We present the results of a comprehensive experimental investigation, combined with DFT calculations. The experiments demonstrate both that there is strong electronic coupling in the blue dimer and that its effects are profound. Experimental evidence has been obtained from molecular structures and key bond distances by XRD, electrochemically measured comproportionation constants for mixed-valence equilibria, temperature-dependent magnetism, chemical properties (solvent exchange, redox potentials, and pK(a) values), XPS binding energies, analysis of excitation-dependent resonance Raman profiles, and DFT analysis of electronic absorption spectra. The spectrum can be assigned based on a singlet ground state with specific hydrogen-bonding interactions with solvent molecules included. The results are in good agreement with available experimental data. The DFT analysis provides assignments for characteristic absorption bands in the near-IR and visible regions. Bridge-based dπ → dπ* and interconfiguration transitions at Ru(III) appear in the near-IR and MLCT and LMCT transitions in the visible. Reasonable values are also provided by DFT analysis for experimentally observed bond distances and redox potentials. The observed temperature-dependent magnetism of the blue dimer is consistent with a delocalized, diamagnetic singlet state (dπ(1)*)(2) with a low-lying, paramagnetic triplet state (dπ(1)*)(1)(dπ(2)*)(1). Systematic structural-magnetic-IR correlations are observed between ν(sym)(RuORu) and ν(asym)(RuORu) vibrational energies and magnetic properties in a series of ruthenium-based, µ-oxo-bridged complexes. Consistent with the DFT electronic structure model, bending along the Ru-O-Ru axis arises from a Jahn-Teller distortion with ∠Ru-O-Ru dictated by the distortion and electron-electron repulsion.

3.
Chemistry ; 15(40): 10620-33, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19746472

RESUMO

The coordination properties of N,N'-bis[4-(4-pyridyl)phenyl]acenaphthenequinonediimine (L(1)) and N,N'-bis[4-(2-pyridyl)phenyl]acenaphthenequinonediimine (L(2)) were investigated in self-assembly with palladium diphosphane complexes [Pd(P;P)(H(2)O)(2)](OTf)(2) (OTf = triflate) by using various analytical techniques, including multinuclear ((1)H, (15)N, and (31)P) NMR spectroscopy and mass spectrometry (P;P = dppp, dppf, dppe; dppp = bis(diphenylphosphanyl)propane, dppf = bis(diphenylphosphanyl)ferrocene, and dppe = bis(diphenylphosphanyl)ethane). Beside the expected trimeric and tetrameric species, the interaction of an equimolar mixture of [Pd(dppp)](2+) ions and L(1) also generates pentameric aggregates. Due to the E/Z isomerism of L(1), a dimeric product was also observed. In all of these species, which correspond to the general formula [Pd(dppp)L(1)](n)(OTf)(2n) (n = 2-5), the L(1) ligand is coordinated to the Pd center only through the terminal pyridyl groups. Introduction of a second equivalent of the [Pd(dppp)](2+) tecton results in coordination to the internal, sterically more encumbered chelating site and induces enhancement of the higher nuclearity components. The presence of higher-order aggregates (n = 5, 6), which were unexpected for the interaction of cis-protected palladium corners with linear ditopic bridging ligands, has been demonstrated both by mass-spectrometric and DOSY NMR spectroscopic analysis. The sequential coordination of the [Pd(dppp)](2+) ion is attributed to the dissimilar steric properties of the two coordination sites. In the self-assembled species formed in a 1:1:1 mixture of [Pd(dppp)](2+)/[Pd(dppe)](2+)/L(1), the sterically more demanding [Pd(dppp)](2+) tectons are attached selectively to the pyridyl groups, whereas the more hindered imino nitrogen atoms coordinate the less bulky dppe complexes, thus resulting in a sterically directed, size-selective sorting of the metal tectons. The propensity of the new ligands to incorporate hydrogen-bonded solvent molecules at the chelating site was confirmed by X-ray diffraction studies.

4.
J Am Chem Soc ; 130(28): 8878-9, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18549212

RESUMO

Spontaneous symmetry-breaking of a racemic mixture of supramolecular triginal prisms into chiral domains on a Au(111) surface is observed by scanning tunneling microscopy (STM). High-resolution STM analysis enables the structural aspects of each enantiomeric domain to be elucidated. The ability to resolve chirality on achiral surfaces has potential applications in heterogeneous stereoselective synthesis and catalysis.


Assuntos
Ouro/química , Substâncias Macromoleculares/química , Microscopia de Tunelamento/métodos , Modelos Moleculares , Compostos Organometálicos/química , Piridinas/química , Estereoisomerismo , Propriedades de Superfície
5.
Inorg Chem ; 47(17): 7695-702, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18652451

RESUMO

The heterobridged dinuclear complex cis,cis-[(bpy) 2Ru(mu-OCH 3)(mu-pyz)Ru(bpy) 2] (2+) ( 1; bpy = 2,2'-bipyridine; pyz = pyrazolate) was synthesized and isolated as a hexafluorophosphate salt. Its molecular structure was fully characterized by X-ray crystallography, (1)H NMR spectroscopy, and ESI mass spectrometry. The compound 1.(PF 6) 2 (C 44H 38F 12N 10OP 2Ru 2) crystallizes in the monoclinic space group P2 1/ c with a = 13.3312(4) A, b = 22.5379(6) A, c = 17.2818(4) A, beta = 99.497(2) degrees , V = 5121.3(2) A (3), and Z = 4. The meso diastereoisomeric form was exclusively found in the crystal structure, although the NMR spectra clearly demonstrated the presence of two stereoisomers in solution (rac and meso forms at approximately 1:1 ratio). The electronic properties of the complex in acetonitrile were investigated by cyclic voltammetry and UV-vis and NIR-IR spectroelectrochemistries. The stepwise oxidation of the Ru (II)-Ru (II) complex into the mixed-valent Ru (II)-Ru (III) and fully oxidized Ru (III)-Ru (III) states is fully reversible on the time scale of the in situ (spectro)electrochemical measurements. The mixed-valent species displays strong electronic coupling, as evidenced by the large splitting between the redox potentials for the Ru(III)/Ru(II) couples (Delta E 1/2 = 0.62 V; K c = 3 x 10 (10)) and the appearance of an intervalence transfer (IT) band at 1490 nm that is intense, narrow, and independent of solvent. Whereas this salient band in the NIR region originates primarily from highest-energy of the three IT transitions predicted for Ru(II)-Ru(III) systems, a weaker absorption band corresponding to the lowest-energy IT transition was clearly evidenced in the IR region ( approximately 3200 cm (-1)). The observation of totally coalesced vibrational peaks in the 1400-1650 cm (-1) range for a set of five bpy spectator vibrations in Ru (II)-Ru (III) relative to Ru (II)-Ru (II) and Ru (III)-Ru (III) provided evidence for rapid electron transfer and valence averaging on the picosecond time scale. Other than a relatively short Ru...Ru distance (3.72 A for the crystalline Ru (II)-Ru (II) complex), the extensive communication between metal centers is attributed mostly to the pi-donor ability of the bridging ligands (pyz, OMe) combined with the pi-acceptor ability of the peripheral (bpy) ligands.

6.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 11): m1388-9, 2008 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21580841

RESUMO

The title compound, trans-[Ru(bpy)(2)(H(2)O)(2)](CF(3)SO(3))(2) (bpy = 2,2'-bipyridine, C(10)H(8)N(2)), crystallized from the decomposition of an aged aqueous solution of a dimeric complex of cis-Ru(bpy)(2) in 0.1 M triflic acid. The Ru(II) ion is located on a crystallographic inversion center and exhibits a distorted octa-hedral coordination with equivalent ligands trans to each other. The Ru-O distance is 2.1053 (16) Šand the Ru-N distances are 2.0727 (17) and 2.0739 (17) Å. The bpy ligands are bent, due to inter-ligand steric inter-actions between H atoms of opposite pyridyl units across the Ru center. The crystal structure exhibits an extensive hydrogen-bonding network involving the water ligands and the trifluoromethane-sulfonate counter-ions within two-dimensional layers, although no close hydrogen-bond inter-actions exist between different layers.

7.
Org Lett ; 7(22): 4971-3, 2005 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16235935

RESUMO

[reaction: see text] The activation parameters for the hindered Pt-N(bipyridyl) rotation observed for a self-assembled rectangle and triangle have been investigated by temperature-dependent and selective inversion recovery (SIR) NMR spectroscopy. The enthalpy of activation (DeltaH) and change in entropy (DeltaS) were determined to be +52.2 kJ/mol and -58.2 J/mol.K for the rectangle and +59.1 kJ/mol and -71.8 J/mol.K for the triangle, respectively, by SIR.


Assuntos
Compostos Macrocíclicos/síntese química , Platina/química , Pirimidinas/química , Compostos Macrocíclicos/química , Espectroscopia de Ressonância Magnética , Temperatura , Termodinâmica
9.
J Org Chem ; 71(11): 4155-63, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16709055

RESUMO

The design and self-assembly of six new supramolecular complexes (four triangles and two 2+2 assemblies) are described. These assemblies incorporate two new bispyridyl cavitand building blocks and were prepared in excellent yields (85-95%). The assemblies and building blocks were characterized with multinuclear NMR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis. Isotopically resolved mass spectrometry along with NMR data confirms the existence of the six assemblies.


Assuntos
Éteres Cíclicos/química , Platina/química , Estrutura Molecular
10.
Inorg Chem ; 44(5): 1211-20, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15732961

RESUMO

Triflate salts of three (Pt(pip2NCN))2(mu-L)2+ (pip2NCNH = 1,3-bis(piperidylmethyl)benzene) dimers bridged by a series of nitrogen-donor ligands (L = pyrazine (pyz), 1,2-bis(4-pyridyl)ethane (bpa), trans-1,2-bis(4-pyridyl)ethylene (bpe)) are reported. These complexes have been fully characterized by 1H NMR spectroscopy and elemental analysis. The X-ray crystal structures of [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2 and [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2 are reported. [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2: triclinic, P, a = 12.5240(5) A, b = 14.1570(6) A, c = 14.2928(6) A, alpha = 106.458(1) degrees , beta = 92.527(1) degrees , gamma = 106.880(1) degrees , V = 2303.46(17) A(3), Z = 2. [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2: monoclinic, P21/c, a = 10.1288(6) A, b = 16.3346(9) A, c = 17.4764(10) A, beta = 90.882(2) degrees , V = 2891.1(3) A3, Z = 2. These structures and solution measurements provide evidence for the strong trans-directing properties of the pip2NCN- ligand. The electronic structures of these complexes and those of the 4,4'-bipyridine (bpy) dimer, (Pt(pip2NCN))2(mu-bpy)2+, also have been investigated by UV-visible absorption and emission spectroscopies, as well as cyclic voltammetry. The accumulated data indicate that variations in the bridging ligands provide remarkable control over the electronic structures and photophysics of these complexes. Notably, the bpa dimer exhibits a broad, low-energy emission from a metal-centered 3LF excited state, whereas the bpe and bpy dimers exhibit structured emission from a lowest pyridyl-centered 3(pi-pi*) excited state. In contrast, the pyz dimer exhibits remarkably intense yellow emission tentatively assigned to a triplet metal-to-ligand charge-transfer excited state.

11.
J Am Chem Soc ; 127(46): 16279-86, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16287321

RESUMO

The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.


Assuntos
Ouro/química , Microscopia de Tunelamento , Conformação Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura
12.
J Am Chem Soc ; 127(30): 10731-8, 2005 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16045362

RESUMO

Wide-angle X-ray scattering and diffusion NMR techniques have been used to obtain structural information on three self-assembled metallacyclic supramolecular complexes in solution: a rectangle, a triangle, and a three-diminsional cage. The low-angle region of the measured diffraction patterns and hydrodynamic radii calculations, determined from DOSY NMR experiments, suggest that the supramolecular assemblies retain their shape when dissolved in nitromethane. The experimental structure functions for the large-angle region have been analyzed, and the intramolecular contributions of the platinum-platinum interactions are discussed. These scattering measurements provide evidence that the supramolecular assemblies are not as rigid in solution as they are in the single crystal. Finally, by analysis of the radial distribution functions of the solutions, direct structural information (e.g., platinum-platinum intramolecular distances and coordination number) about the supramolecular assemblies has been obtained.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Compostos Organoplatínicos/química , Platina/química , Difração de Raios X/métodos , Modelos Moleculares , Soluções
13.
Proc Natl Acad Sci U S A ; 102(4): 971-4, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15657148

RESUMO

A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.


Assuntos
Grafite/química , Ouro , Microscopia de Tunelamento
14.
J Am Chem Soc ; 127(34): 12131-9, 2005 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16117555

RESUMO

The design and self-assembly of five new supramolecular complexes (a rectangle, a triangle, a hexagon, and two squares) are described. These assemblies incorporate carborane building blocks and were prepared in excellent yields (>85%). The assemblies and building blocks were characterized with multinuclear NMR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis. Isotopically resolved mass spectrometry data confirm the existence of the rectangle, triangle, and hexagon, and NMR data are consistent with the formation of all five assemblies. The X-ray structures of two linear carborane building blocks, 1,12-(4-CC(C(5)H(4)N)(2)-p-C(2)B(10)H(10) (1) and 1,12-(trans-(Pt(PEt(3))(2)I)CC)(2)-p-C(2)B(10)H(10) (2), are reported: 1 is monoclinic, P2(1)/c, a = 10.6791(4) A, b = 8.0091(14) A, c = 11.6796(4) A, beta = 107.8461(15) degrees , V = 950.89(5) A(3), Z = 2; 2 is monoclinic, C2/c, a = 62.1128(10) A, b = 22.0071(3) A, c = 14.0494(2) A, beta = 89.9411(8) degrees , V = 19204.4(5) A(3), Z = 16. Crystals of the linear linker 1 exhibit close pi-pi pyridine and pyridine-B(carborane) interactions, which are discussed.


Assuntos
Boranos/química , Cristalografia por Raios X , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Piridinas/química , Espectrometria de Massas por Ionização por Electrospray
15.
J Am Chem Soc ; 125(12): 3446-7, 2003 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-12643703

RESUMO

A strategy for designing cooperative outer-sphere two-electron platinum reagents is demonstrated. The novel platinum(II) complex, [Pt(tpy)(pip2NCN)][BF4] (1(BF4-)) (tpy = 2,2':6',2' '-terpyridine, pip2NCN- = 2,6-(CH2N(CH2)5)2-C6H3-), in which the metal is bonded to two pincer type ligands, has been prepared. Treatment of 1 with protic acid results in protonation of the pendant piperdyl groups, allowing for the isolation of [Pt(tpy)(pip2NCNH2)][PF6]3 (2(PF6-)3). 1H NMR spectra of 1 and 2 establish that in each complex the terpyridyl ligand is tridentate, whereas the piperdyl ligand is monodentate, bonded to platinum through the phenyl ring. The structure of the protonated complex was confirmed by an X-ray crystallographic study of crystals of 2(Cl-)3.4H2O. The cyclic voltammagram of 1 exhibits two reversible one-electron reduction waves at E degrees ' = -0.98 V and E degrees ' = -1.50 V (E degrees ' = (Epc + Epa)/2), with a DeltaEp of 65 and 61 mV, respectively. In contrast to other Pt(II) complexes, including 2, this complex also undergoes a nearly reversible two-electron oxidation process at E degrees ' = 0.40 V (DeltaEp = 43 mV, 0.01 V/s). The accumulated data are consistent with the unusual ligand architecture of 1 being capable of stabilizing and allowing for facile interconversion between the Pt(II) and Pt(IV) oxidation states.

16.
Inorg Chem ; 43(2): 725-33, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14731036

RESUMO

Triflate salts of four platinum(II) pyridyl complexes with a mer-coordinating tridentate pincer ligand, pip(2)NCN(-) (pip(2)NCNH = 1,3-bis(piperidylmethyl)benzene), are reported: Pt(pip(2)NCN)(L)(+) (2, L = pyridine; 3, L = 4-phenylpyridine; 5, L = 2,6-pyridinedimethanol) and [(Pt(pip(2)NCN))(2)(micro-4,4'-bipyridine)](2+) (4). The complexes have been fully characterized by (1)H NMR spectroscopy, elemental analysis, and X-ray crystallography. Compound 2(CF(3)SO(3)(-)): triclinic, P1, a = 9.7518(6) A, b = 12.0132(8) A, c = 12.6718(9) A, alpha = 114.190(2) degrees, beta = 100.745(3) degrees, gamma = 103.545(2) degrees, V = 1247.95(14) A(3), Z = 2. Compound 3(CF(3)SO(3)(-)): monoclinic, P2(1)/c, a = 15.550(2) A, b = 9.7386(11) A, c = 18.965(3) A, beta = 92.559(7) degrees, V = 2869.1(6) A(3), Z = 4. Compound 4(CF(3)SO(3)(-))(2).1/2(CH(3))(2)CO: monoclinic, I2/a, a = 21.3316(5) A, b = 9.6526(2) A, c = 26.1800(6) A, beta = 96.4930(10) degrees, V = 5356.0(2) A(3), Z = 4. Compound 5(CF(3)SO(3)(-)).3/2CHCl(3): monoclinic, P2(1)/n, a = 17.1236(10) A, b = 9.3591(5) A, c = 21.3189(11) A, beta = 96.11(3) degrees, V = 3397.2(3) A(3), Z = 4. The accumulated data indicate that the phenyl group of pip(2)NCN(-) labilizes the trans pyridyl ligand. The electronic structures were investigated using cyclic voltammetry, as well as UV-visible absorption and emission spectroscopies. Red emission from 2 in rigid media originates from a lowest triplet ligand field excited state, whereas yellow-green emissions from 3 and 4 originate from a lowest pyridyl ligand-centered triplet pi-pi state, indicating that substitution of the pyridyl ligand results in a dramatic change in the orbital character of the emissive state.

17.
Inorg Chem ; 41(8): 2275-81, 2002 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-11952385

RESUMO

A new series of square planar Pt(II) complexes with the mer-coordinating tridentate ligand, pip(2)NCN(-) (pip(2)NCNH = 1,3-bis(piperdylmethyl)benzene), has been prepared: Pt(pip(2)NCN)Cl (2), Pt(pip(2)NCN)Br (3), Pt(pip(2)NCN)I (4), and [Pt(pip(2)NCN)(CH(3)N=C(CH(3))(2))][CF(3)SO(3)] (5). The complexes have been fully characterized by (1)H NMR spectroscopy, elemental analysis, and UV-vis spectroscopy. The X-ray crystal structures of pip(2)NCNBr (1), 2, and 5 are reported. Compound 1: triclinic, P, a = 10.081(1) A, b = 10.153(2) A, c = 10.390(1) A, alpha = 66.05(1) degrees, beta = 79.07(1) degrees, gamma = 64.51(1) degrees, V = 877.1(2) A(3), Z = 2. Complex 2: triclinic, P, a = 9.897(2) A, b = 10.191(2) A, c = 19.174(4) A, alpha = 75.09(3) degrees, beta = 76.14(3) degrees, gamma = 71.00(3) degrees, V = 1741.2(6) A(3), Z = 4. Complex 5: triclinic, P, a = 10.709(2) A, b = 11.2321(10) A, c = 12.447(2) A, alpha = 110.509(8) degrees, beta = 112.417(10) degrees, gamma = 91.066(9) degrees, V = 1276.1(3) A(3), Z = 2. In 77 K 3:1 EtOH/MeOH glassy solution, these colorless complexes exhibit weak red-orange to red emissions originating from a lowest spin-forbidden ligand field excited state.

18.
J Am Chem Soc ; 126(6): 1594-5, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14871065

RESUMO

Luminescent chloride and hexaflurophosphate salts of Pt(Me2bzimpy)Cl+ (Me2bzimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) are reported. As solids, both compounds are vapochromic, undergoing pronounced and reversible changes of color and emission in the presence of volatile organic compounds. The chloride salt responds to vapors of methanol, chloroform, ethanol, and acetonitrile, undergoing a distinct change in color from yellow to red within seconds. The PF6- salt responded selectively to acetonitrile vapor, changing from yellow to violet while sorbing 1.0 +/- 0.1 equiv. For either salt, leaving vapor-exposed samples in air for several days or heating for several minutes restored the original color. UV-visible absorption spectra and solid-state room temperature and 77 K emission spectra are reported, and the accumulated data are consistent with a decrease in Pt...Pt separation accompanying vapor sorption.

19.
Inorg Chem ; 43(8): 2548-55, 2004 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15074972

RESUMO

Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA