Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 83(10): 2983-2995, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32998509

RESUMO

Streptomyces mobaraensis produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPIac). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.g., S. lavendulae and S. hygroscopicus, that reverse chymosin-mediated angiotensin activation and inhibit other serine and cysteine proteases. Chymotrypsin and papain were both inhibited by the SPIac compounds in the low nanomolar range. SPIac differs from the characterized chymostatins by the exchange of phenylalanine for tyrosine. The crystal structure of one of these chymostatin variants confirmed its molecular structure and revealed a S-configured hemithioacetal bond with the catalytic Cys25 thiolate as well as close interactions with hydrophobic S1 and S2 subsite amino acids. A model for chymostatin biosynthesis is provided based on the discovery of clustered genes encoding several putative nonribosomal peptide synthetases; among them, there is the unusual CstF enzyme that accommodates two canonical amino acid activation domains as well as three peptide carrier protein domains.


Assuntos
Inibidores Enzimáticos/farmacologia , Oligopeptídeos , Papaína/antagonistas & inibidores , Streptomyces , Aldeídos , Sequência de Aminoácidos , Vias Biossintéticas , Hidroxilação , Modelos Moleculares , Estrutura Molecular , Peptídeo Sintases , Especificidade por Substrato
2.
FEBS J ; 287(4): 708-720, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420998

RESUMO

Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (http://www.rcsb.org).


Assuntos
Proteínas de Bactérias/química , Glutamina/química , Streptomyces/enzimologia , Transglutaminases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotinilação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutamina/metabolismo , Cinética , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato , Transglutaminases/genética , Transglutaminases/metabolismo
3.
FEBS J ; 285(24): 4684-4694, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30318745

RESUMO

The protein cross-linking enzyme transglutaminase from Streptomyces mobaraensis (MTG) is frequently used to modify therapeutic proteins. In order to reveal the binding mode of glutamine donor substrates, we have now crystallized MTG covalently linked to large inhibitory peptides. A series of peptide structures were examined but DIPIGSKMTG, which was chloroacetylated at serine, was the only inhibitory molecule that resulted in an interpretable density map. We found that, besides the warhead (modified Ser6), Ile4 and Gly5 of the inhibitory peptide occupy the tight but extended hydrophobic bottom of the MTG-binding cleft. Both termini of the peptide protrude along the cleft walls almost perpendicular to the bottom of the extended cleft. This peptide model suggests a zipper-like cross-linking mechanism of self-assembled substrate proteins by MTG.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glutamina/metabolismo , Fragmentos de Peptídeos/farmacologia , Streptomyces/enzimologia , Transglutaminases/química , Transglutaminases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
4.
J Biotechnol ; 281: 115-122, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981445

RESUMO

Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for numerous industrial applications. Recombinant production requires proteolytic activation of the zymogen. The study provides a convenient procedure for the preparation of the transglutaminase-activating metalloprotease (TAMP) in Escherichia coli. In contrast to wtTAMP, rTAMP exhibited the P domain of convertases as molecular mass of 55.7 kDa suggested. Protein integrity was beneficially influenced by 2-5 mM CaCl2. Study of pH and temperature optima assigned rTAMP to the neutral metalloproteases, more heat-resistant than Dispase but not thermolysin. Zinc had no inhibiting effect but 3.1 µM EDTA completely reduced activity of 5 nM TAMP. MTG, exceeding concentration of rTAMP by three orders of magnitude, was largely activated within few minutes. The kinetic parameters KM (1.31 ±â€¯0.05 mM) and kcat (135 ±â€¯4.3 s-1), monitored by isothermal titration calorimetry (ITC), further highlighted catalytic efficiency (103,053 M-1 s-1) of rTAMP and rapid processing of MTG. ITC even revealed that inhibition of rTAMP by its intrinsic inhibitory protein SSTI was an enthalpy-driven process resulting in Kd of 199 ±â€¯37.9 nM. The production procedure of rTAMP in E. coli closes the gap between production and application of recombinant MTG and may enhance relevance of MTG-mediated reactions in pharmaceutical processes.


Assuntos
Proteínas de Bactérias , Escherichia coli/metabolismo , Metaloproteases , Streptomyces/enzimologia , Transglutaminases , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/genética , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Transglutaminases/genética , Transglutaminases/metabolismo
5.
Protein Sci ; 27(5): 910-922, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430769

RESUMO

Transglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPIp ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG. SPIp exhibits a rigid, thermo-resistant double-psi-beta-barrel fold that is stabilized by two cysteine bridges. Incorporation of biotin cadaverine identified Gln-6 as the only amine acceptor site on SPIp accessible for MTG. Substitution of Lys-7 demonstrated that small and hydrophobic residues in close proximity to Gln-6 favor MTG-mediated modification and are likely to facilitate introduction of the substrate into the front vestibule of MTG. Moreover, exchange of various surface residues of SPIp for arginine and glutamate/aspartate outside the glutamine donor region influences the efficiency of modification by MTG. These results suggest the occurrence of charged contact areas between MTG and the acyl donor substrates beyond the front vestibule, and pave the way for protein engineering approaches to improve the properties of artificial MTG-substrates used in biomedical applications.


Assuntos
Streptomyces/enzimologia , Transglutaminases/química , Transglutaminases/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA