Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Physiol ; 193(1): 229-233, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37186777

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.


Assuntos
Amaranthus , Herbicidas , Humanos , Amaranthus/genética , Resistência a Herbicidas/genética , Variações do Número de Cópias de DNA , Hibridização in Situ Fluorescente , DNA , DNA Circular , Herbicidas/farmacologia
2.
Planta ; 253(2): 48, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33484360

RESUMO

MAIN CONCLUSION: This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F1 and F2 progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F1 progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F2 progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.


Assuntos
Resistência a Herbicidas , Sorghum , Sulfonamidas , Triazinas , Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Sorghum/efeitos dos fármacos , Sorghum/genética , Sulfonamidas/toxicidade , Triazinas/toxicidade
3.
Proc Natl Acad Sci U S A ; 115(13): 3332-3337, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531028

RESUMO

Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock's postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Amaranthus/genética , DNA Circular , Amplificação de Genes , Regulação da Expressão Gênica de Plantas , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Amaranthus/efeitos dos fármacos , Amaranthus/enzimologia , Cromossomos de Plantas , Glicina/análogos & derivados , Glicina/farmacologia , Glifosato
4.
Plant Physiol ; 176(3): 1932-1938, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29295942

RESUMO

An increase in gene copy number is often associated with changes in the number and structure of chromosomes, as has been widely observed in yeast and eukaryotic tumors, yet little is known about stress-induced chromosomal changes in plants. Previously, we reported that the EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, the molecular target of glyphosate, was amplified at the native locus and on an extra chromosome in glyphosate-resistant Amaranthus tuberculatus Here, we report that the extra chromosome is a ring chromosome termed extra circular chromosome carrying amplified EPSPS (ECCAE). The ECCAE is heterochromatic, harbors four major EPSPS amplified foci, and is sexually transmitted to 35% of the progeny. Two highly glyphosate resistant (HGR) A. tuberculatus plants with a chromosome constitution of 2n = 32+1 ECCAE displayed soma cell heterogeneity. Some cells had secondary ECCAEs, which displayed size polymorphisms and produced novel chromosomal variants with multiple gene amplification foci. We hypothesize that the ECCAE in the soma cells of HGR A. tuberculatus plants underwent breakage-fusion-bridge cycles to generate the observed soma cell heterogeneity, including de novo EPSPS gene integration into chromosomes. Resistant soma cells with stable EPSPS amplification events as de novo insertions into chromosomes may survive glyphosate selection pressure during the sporophytic phase and are plausibly transmitted to germ cells leading to durable glyphosate resistance in A. tuberculatus This is the first report of early events in aneuploidy-triggered de novo chromosome integration by an as yet unknown mechanism, which may drive rapid adaptive evolution of herbicide resistance in common waterhemp.


Assuntos
Amaranthus/genética , Aneuploidia , Evolução Biológica , Duplicação Gênica , Resistência a Herbicidas/genética , Cromossomos de Plantas/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glicina/análogos & derivados , Glicina/toxicidade , Meristema/efeitos dos fármacos , Meristema/genética , Modelos Biológicos , Cromossomos em Anel , Telômero/genética , Glifosato
5.
Plant Physiol ; 173(2): 1226-1234, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956489

RESUMO

Recent and rapid evolution of resistance to glyphosate, the most widely used herbicides, in several weed species, including common waterhemp (Amaranthus tuberculatus), poses a serious threat to sustained crop production. We report that glyphosate resistance in A tuberculatus was due to amplification of the 5-enolpyruvylshikimate-3-P synthase (EPSPS) gene, which encodes the molecular target of glyphosate. There was a positive correlation between EPSPS gene copies and its transcript expression. We analyzed the distribution of EPSPS copies in the genome of A tuberculatus using fluorescence in situ hybridization on mitotic metaphase chromosomes and interphase nuclei. Fluorescence in situ hybridization analysis mapped the EPSPS gene to pericentromeric regions of two homologous chromosomes in glyphosate sensitive A tuberculatus In glyphosate-resistant plants, a cluster of EPSPS genes on the pericentromeric region on one pair of homologous chromosomes was detected. Intriguingly, two highly glyphosate-resistant plants harbored an additional chromosome with several EPSPS copies besides the native chromosome pair with EPSPS copies. These results suggest that the initial event of EPSPS gene duplication may have occurred because of unequal recombination mediated by repetitive DNA. Subsequently, gene amplification may have resulted via several other mechanisms, such as chromosomal rearrangements, deletion/insertion, transposon-mediated dispersion, or possibly by interspecific hybridization. This report illustrates the physical mapping of amplified EPSPS copies in A tuberculatus.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Amaranthus/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Amaranthus/genética , Cromossomos de Plantas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/administração & dosagem , Glicina/farmacologia , Herbicidas/administração & dosagem , Herbicidas/farmacologia , Kansas , Mapeamento Físico do Cromossomo , Proteínas de Plantas/genética , Glifosato
6.
Plant Physiol ; 166(3): 1200-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037215

RESUMO

Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/genética , Evolução Biológica , Mapeamento Cromossômico , Amplificação de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Hibridização in Situ Fluorescente , Modelos Biológicos , Glifosato
7.
Pest Manag Sci ; 80(8): 3717-3725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483107

RESUMO

BACKGROUND: Japanese brome (Bromus japonicus Thumb.) is one of the problematic annual weeds in winter wheat (Triticum aestivum L.) and is generally controlled by acetolactate synthase (ALS) inhibitors. Repeated use of the ALS inhibitor propoxycarbazone-Na resulted in the evolution of resistance to this herbicide in three B. japonicus populations, i.e., R1, R2, and R3 in Kansas (KS). However, the level of resistance and mechanism conferring resistance in these populations is unknown. The objectives of this research were to (i) evaluate the level of resistance to propoxycarbazone-Na in R1, R2, and R3 in comparison with a known susceptible population (S1), (ii) investigate the mechanism of resistance involved in conferring ALS-inhibitor resistance, and (iii) investigate the cross-resistance to other ALS inhibitors. RESULTS: Dose-response (0 to 16x; x = 44 g ai ha-1 of propoxycarbazone-Na) assay indicated 167, 125, and 667-fold resistance in R1, R2 and R3 populations, respectively, compared to S1 population. ALS gene sequencing confirmed the mutations resulting in amino acid substitutions, i.e., Pro-197-Thr (R3, R1)/Ser (R2, R1) bestowing resistance to these ALS inhibitors. Such amino acid substitutions also showed differential cross-resistance to sulfosulfuron, mesosulfuron-methyl, pyroxsulam, and imazamox among resistant populations. Pretreatment with malathion (a cytochrome P450 enzyme-inhibitor) followed by imazamox treatment suggested cross-resistance to this herbicide possibly via metabolism only in R3 population. CONCLUSION: Overall, these results confirm the first case of target-site based resistance to ALS inhibitors in B. japonicus in the US, highlighting the need for exploring herbicides with alternative modes of action to enhance weed control in winter wheat. © 2024 Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Bromus , Resistência a Herbicidas , Herbicidas , Proteínas de Plantas , Acetolactato Sintase/genética , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Bromus/enzimologia , Bromus/efeitos dos fármacos , Bromus/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Kansas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/enzimologia
8.
J Agric Food Chem ; 72(13): 6931-6941, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514379

RESUMO

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha-1) compared to the most sensitive genotype (WW-24). Further, HPLC analysis using [14C] tembotrione suggested that both WW-1 and WW-2 metabolized tembotrione rapidly to nontoxic metabolites. Pretreatment with a P450 inhibitor (malathion) followed by tembotrione application increased the sensitivity of WW-1 and WW-2 genotypes to this herbicide, suggesting likely involvement of P450 enzymes in metabolizing tembotrione similar to corn. Overall, our results suggest that the genotypes WW-1 and WW-2 can potentially be used to develop tembotrione-resistant wheat varieties.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Triticum/genética , Triticum/metabolismo , Cicloexanonas/farmacologia , Sulfonas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Zea mays/metabolismo
9.
J Agric Food Chem ; 72(10): 5122-5132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382533

RESUMO

Palmer amaranth has evolved target and nontarget site resistance to protoporphyrinogen oxidase-inhibitor herbicides in the United States. Recently, a population (KCTR) from a long-term conservation tillage study in Kansas was found to be resistant to herbicides from six sites of action, including to PPO-inhibitors, even with this herbicide group being minimally used in this field. This research investigated the level of resistance to postemergence PPO-inhibitors, target- and nontarget-site resistance mechanism(s), and efficacy of pre-emergence chemistries. The greenhouse experiments confirmed 6.1- to 78.9-fold resistance to lactofen in KCTR, with the level of resistance increasing when KCTR was purified for the resistance trait. PPO2 sequences alignment revealed the absence of known mutations conferring resistance to PPO-inhibitors in KCTR Palmer amaranth, and differential expression of the PPO2 gene did not occur. KCTR metabolized fomesafen faster than the susceptible population, indicating that herbicide detoxification is the mechanism conferring resistance in this population. Further, treatment with the cytochrome P450-inhibitor malathion followed by lactofen restored the sensitivity of KCTR to this herbicide. Despite being resistant to POST applied PPO-inhibitors, KCTR Palmer amaranth was completely controlled by the labeled rate of the PRE applied PPO-inhibitors fomesafen, flumioxazin, saflufenacil, sulfentrazone, and oxadiazon. The overall results suggest that P450-mediated metabolism confers resistance to PPO-inhibitors in KCTR, rather than alterations in the PPO2, which were more commonly found in other Palmer amaranth populations. Future work will focus on identifying the fomesafen metabolites and on unravelling the genetic basis of metabolic resistance to PPO-inhibitor herbicides in KCTR Palmer amaranth.


Assuntos
Amaranthus , Benzamidas , Éteres Difenil Halogenados , Herbicidas , Herbicidas/farmacologia , Kansas , Protoporfirinogênio Oxidase/genética , Resistência a Herbicidas/genética , Amaranthus/metabolismo
10.
Genome Biol ; 25(1): 139, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802856

RESUMO

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Genômica/métodos , Controle de Plantas Daninhas/métodos , Genoma de Planta , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Melhoramento Vegetal/métodos
11.
Genes (Basel) ; 14(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136999

RESUMO

Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.


Assuntos
Sistemas CRISPR-Cas , Tecnologia de Impulso Genético , Tecnologia de Impulso Genético/métodos , Ecossistema , Controle de Plantas Daninhas/métodos , Plantas Daninhas/genética
12.
J Agric Food Chem ; 71(2): 1035-1045, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602944

RESUMO

Mesotrione is effective in controlling a wide spectrum of weeds in corn but not registered for postemergence use in sorghum because of crop injury. We screened a sorghum germplasm collection and identified two mesotrione-resistant sorghum genotypes (G-1 and G-10) and one susceptible genotype (S-1) in an in vitro plate assay. A mesotrione dose-response assay under greenhouse and field conditions confirmed that G-1 and G-10 are highly resistant compared to S-1. We found enhanced metabolism of mesotrione in G-1 and G-10 using HPLC assay, and a significant reduction in biomass accumulation was found in G-1 and G-10 plants pretreated with cytochrome P450 (CYP)-inhibitors malathion or piperonyl butoxide, indicating the involvement of CYPs in the metabolism of mesotrione. Genetic analyses using F1 and F2 progenies generated by crossing G-1 and G-10 separately with S-1 revealed that mesotrione resistance in sorghum is controlled by a single dominant gene along with several genes with minor effects.


Assuntos
Sorghum , Sorghum/genética , Poaceae , Controle de Plantas Daninhas , Plantas Daninhas/genética , Inibidores das Enzimas do Citocromo P-450
13.
Pest Manag Sci ; 79(11): 4290-4294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37345512

RESUMO

BACKGROUND: An Italian ryegrass population from Arkansas, USA developed glyphosate resistance due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. The plants in this population with approximately 70 EPSPS copies were used in the present study for the physical mapping of amplified copies of EPSPS gene to determine the possible mechanism of EPSPS gene amplification conferring glyphosate resistance in Italian ryegrass. RESULT: Fluorescence in situ hybridization (FISH) analysis of glyphosate resistant (GR) Italian ryegrass plants with approximately 70 EPSPS copies displayed EPSPS hybridization signals randomly on most of the metaphase chromosomes. Glyphosate susceptible (GS) Italian ryegrass plants with one EPSPS copy displayed single prominent EPSPS hybridization signal, which was co-localized with 5S rDNA locus along with few additional signals on the outside of chromosomes. Pulsed-field gel electrophoresis (PFGE) followed by DNA blot using EPSPS gene as a probe identified a prominent EPSPS hybridization around the 400 kb region in GR DNA samples, but not in GS DNA samples. CONCLUSION: We report the extrachromosomal DNA-mediated glyphosate resistance in Italian ryegrass. Physical mapping of amplified copies of EPSPS gene in Italian ryegrass by FISH gives us a clue that the amplified copies of EPSPS gene may be present in the extrachromosomal DNA elements. Further analysis by PFGE followed by DNA blotting revealed that the extrachromosomal DNA containing EPSPS is approximately 400 kb similar in size with that of eccDNA replicon in Amaranthus palmeri. © 2023 Society of Chemical Industry.

14.
Sci Rep ; 12(1): 21822, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528649

RESUMO

In this study, the inheritance of 2,4-D resistance in a multiple herbicide-resistant Palmer amaranth (KCTR) was investigated. Direct and reciprocal crosses were performed using 2,4-D-resistant KCTR and susceptible KSS plants to generate F1 progenies. 2,4-D dose-response assays were conducted to evaluate the response of progenies from each F1 family along with KCTR and KSS plants in controlled environmental growth chambers. Additionally, 2,4-D-resistant male and female plants from each of the F1 families were used in pairwise crosses to generate pseudo-F2 families. Segregation (resistance or susceptibility) of progenies from the F2 families in response to a discriminatory rate of 2,4-D (i.e., 560 g ae ha-1) was evaluated. Dose-response analysis of F1 progenies derived from direct and reciprocal crosses suggested that the 2,4-D resistance in KCTR is a nuclear trait. Chi-square analyses of F2 segregation data implied that 2,4-D resistance in KCTR is controlled by multiple gene(s). Overall, our data suggest that the 2,4-D resistance in KCTR Palmer amaranth is a nuclear inherited trait controlled by multiple genes. Such resistance can spread both via pollen or seed-mediated gene flow. In future, efforts will be directed towards identifying genes mediating 2,4-D resistance in KCTR population.


Assuntos
Amaranthus , Herbicidas , Humanos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/farmacologia
15.
Pest Manag Sci ; 78(2): 409-415, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34532972

RESUMO

Grain sorghum is a versatile crop, which can thrive under limited water and other inputs. However, crop loss from weed infestation continues to be a major constraint in grain sorghum production. Particularly, post-emergence grass weed control is a great challenge in grain sorghum due to the lack of herbicide options. Unlike in other major crops, such as maize or soybean, herbicide-resistant sorghum technology that can facilitate weed control throughout crop growing season is not available to growers yet. The development of herbicide-resistant sorghum can have potential to improve weed management, including post-emergence grass weed control. One of the major concerns in the development of such technology in sorghum is escape of resistance traits into weedy relatives of sorghum (e.g. shattercane and johnsongrass). This review focuses on sources of herbicide resistance in sorghum, the status of the development of herbicide-resistant sorghum technologies, overview of breeding methods, and limitations in the development of such sorghum technology as well as economic benefits for sorghum growers. © 2021 Society of Chemical Industry.


Assuntos
Herbicidas , Sorghum , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Melhoramento Vegetal , Plantas Daninhas , Controle de Plantas Daninhas
16.
Pest Manag Sci ; 77(1): 126-130, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32954607

RESUMO

BACKGROUND: Evolution and spread of resistance to glyphosate in kochia [Bassia scoparia (L.) A.J. Scott] is a major challenge for the sustainability of glyphosate-resistant crop technology in this region. Dicamba offers a viable option to manage glyphosate-resistant kochia. However, the recent and rapid evolution of dicamba resistance in glyphosate-resistant kochia populations in Kansas (KS), and other states in the USA is a threat to the management of this weed. Our previous research suggests that two distinct mechanisms confer dicamba resistance in KS (KSUR) and NE (CSUR) kochia. CSUR kochia is dicamba-resistant due to a double mutation in an auxin and dicamba coreceptor gene (Aux/IAA16), and CSUR kochia plants show reduced dicamba translocation. However, the mechanism of dicamba resistance in KSUR is not known. The objective of this research was to determine if dicamba resistance in KSUR is due to a different mechanism and therefore evolved independently from CSUR by measuring whether the resistance traits are chromosomally linked. RESULTS: The F1 and F2 progenies from KSUR × CSUR were generated. Single dicamba rate tests were conducted using the F1 and F2 progeny. The results indicate that two different genes confer dicamba resistance in KSUR and CSUR; importantly, these two genes are not linked. CONCLUSION: This research provides evidence that different populations of kochia have independently evolved resistance to dicamba by different mechanisms, and we confirmed that the genes conferring resistance to the same herbicide in different populations are not chromosomally linked.


Assuntos
Chenopodiaceae , Herbicidas , Dicamba , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Kansas , Nebraska
18.
Antioxidants (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466087

RESUMO

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.

19.
Front Plant Sci ; 11: 614618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519873

RESUMO

Evolution of multiple herbicide resistance in Palmer amaranth across the United States is a serious challenge for its management. Recently, a Palmer amaranth population (KCTR; Kansas Conservation Tillage Resistant) from a long-term conservation tillage research project in Kansas, United States, was found uncontrolled by several commonly used herbicides. Importantly, this field did not have a history of repeated use of some of the herbicides for which the KCTR Palmer amaranth population showed lack of control. The objectives of this study were to confirm the evolution of multiple resistances and determine possible mechanism(s) of resistance in KCTR Palmer amaranth plants. In response to post-emergence application, 28-100% of KCTR Palmer amaranth survived field recommended rates of 2,4-D, ALS-, PS II-, EPSPS-, PPO-, HPPD-inhibitor herbicides, or tank- or pre-mixture of PS II- and HPPD-inhibitor herbicides, confirming evolution of six-way resistance in this Palmer amaranth population. However, this population was found susceptible to the PS I- and glutamine synthetase inhibitor herbicides. Chlorsulfuron-, imazethapyr-, and atrazine-resistant plants did not show any previously reported mutation in ALS and psbA genes, the target sites of these herbicides, respectively. However, the survivors of glyphosate treatment showed amplification of EPSPS gene (up to 88 copies). The KCTR plants pretreated with cytochrome P450 or GST inhibitors along with atrazine, 2,4-D, lactofen, or mesotrione had significantly less biomass accumulation than those treated with herbicides alone. Plants treated with P450 inhibitor followed by imazethapyr showed moderate reduction of biomass in KCTR which was statistically similar to a susceptible Palmer amaranth population treated with imazethapyr. These results suggest predominance of metabolic resistance possibly mediated by cytochrome P450 and GST enzyme activity that may have predisposed the KCTR Palmer amaranth population to evolve resistance to multiple herbicides. This is the first report of evolution of six-way resistance in a single Palmer amaranth population. Appropriate management strategies, including integration of cultural, and mechanical, and herbicide mixtures, are warranted to control such Palmer amaranth populations.

20.
Pest Manag Sci ; 76(3): 1173-1182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31587478

RESUMO

BACKGROUND: Site-specific weed management (SSWM) demands higher resolution data for mapping weeds in fields, but the success of this tool relies on the efficiency of optical sensors to discriminate weeds relative to other targets (soils and residues) before cash crop establishment. The objectives of this study were to (i) evaluate the accuracy of spectral bands to differentiate weeds (target) and other non-targets, (ii) access vegetation indices (VIs) to assist in the discrimination process, and (iii) evaluate the accuracy of the thresholds to distinguish weeds relative to non-targets for each VI using training and validation data sets. RESULTS: The main outcomes of this study for effectively distinguishing weeds from other non-targets are (i) training and validation data exhibited similar spectral curves, (ii) red and near-infrared spectral bands presented greater accuracy relative to the other bands, and (iii) the tested VIs increased the discrimination accuracy related to single bands, with an overall accuracy above 95% and a kappa above 0.93. CONCLUSION: This study provided a novel approach to distinguish weeds from other non-targets utilizing a ground-level sensor before cash crop planting based on field spectral data. However, the limitations of this study are related to the spatial resolution to distinguish weeds that might be closer to the one this study presented, and also related to the soil and crop residues conditions at the time of collecting the readings. Overall the results presented contribute to an improved understanding of spectral signatures from different targets (weeds, soils, and residues) before planting time supporting SSWM. © 2019 Society of Chemical Industry.


Assuntos
Plantas Daninhas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA