Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(10): e2216975120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848579

RESUMO

Over the last few decades, symbiosis and the concept of holobiont-a host entity with a population of symbionts-have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (102 to 103 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned.


Assuntos
Biomineralização , Elétrons , Fenômenos Físicos , Biofísica
2.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

3.
J Am Chem Soc ; 143(12): 4569-4584, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33730507

RESUMO

1s2p resonant inelastic X-ray scattering (1s2p RIXS) has proven successful in the determination of the differential orbital covalency (DOC, the amount of metal vs ligand character in each d molecular orbital) of highly covalent centrosymmetric iron environments including heme models and enzymes. However, many reactive intermediates have noncentrosymmetric environments, e.g., the presence of strong metal-oxo bonds, which results in the mixing of metal 4p character into the 3d orbitals. This leads to significant intensity enhancement in the metal K-pre-edge and as shown here, the associated 1s2p RIXS features, which impact their insight into electronic structure. Binuclear oxo bridged high spin Fe(III) complexes are used to determine the effects of 4p mixing on 1s2p RIXS spectra. In addition to developing the analysis of 4p mixing on K-edge XAS and 1s2p RIXS data, this study explains the selective nature of the 4p mixing that also enhances the analysis of L-edge XAS intensity in terms of DOC. These 1s2p RIXS biferric model studies enable new structural insight from related data on peroxo bridged biferric enzyme intermediates. The dimeric nature of the oxo bridged Fe(III) complexes further results in ligand-to-ligand interactions between the Fe(III) sites and angle dependent features just above the pre-edge that reflect the superexchange pathway of the oxo bridge. Finally, we present a methodology that enables DOC to be obtained when L-edge XAS is inaccessible and only 1s2p RIXS experiments can be performed as in many metalloenzyme intermediates in solution.


Assuntos
Compostos Férricos/química , Teoria Quântica , Eletrônica , Estrutura Molecular , Espalhamento de Radiação , Raios X
4.
J Am Chem Soc ; 141(8): 3470-3479, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30501181

RESUMO

Molecular complexes based on Prussian Blue analogues have recently attracted considerable interest for their unique bistable properties combined to ultimately reduced dimensions. Here, we investigate the first dinuclear FeCo complex exhibiting both thermal and photomagnetic bistability in the solid state. Through an experimental and theoretical approach combining local techniques-X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and ligand field multiplet calculations-we were able to evidence the changes occurring at the atomic scale in the electronic and magnetic properties. The spectroscopic studies were able to fully support at the atomic level the following conclusions: (i) the 300 K phase and the light-induced excited state at 4 K are both built from FeLSIII-CoHSII paramagnetic pairs with no apparent reorganization of the local structure, (ii) the 100 K phase is composed of FeLSII-CoLSIII diamagnetic pairs, and (iii) the light-induced excited state is fully relaxed at an average temperature of ≈50 K. In the paramagnetic phase at 2 K, XAS and XMCD reveal that both Fe and Co ions exhibit a rather large orbital magnetic moment (0.65 µB and 0.46 µB, respectively, under an external magnetic induction of 6.5 T), but it was not possible to detect a magnetic interaction between spin centers above 2 K.

5.
Inorg Chem ; 57(13): 7610-7619, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29897743

RESUMO

CoFe Prussian blue analogues (PBAs) are well-known for their magnetic bistability tuned by external stimuli. The photoswitching properties are due to the electron transfer from CoLSIII-NC-FeLSII to CoHSII-NC-FeLSIII linkage, accompanied by the spin change of the Co ions (HS stands for high spin and LS for low spin). In this work, we investigated 100 nm particles of the Rb2Co4[Fe(CN)6]3.3·11H2O PBA (named RbCoFe). The photoexcited state of the PBA was reached by red laser excitation (λ = 635 nm) and observed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) that are element-specific probes. The XMCD measurements at the Co and Fe L2,3 edges, probing the magnetic 3d orbitals, have provided a direct evidence of the antiferromagnetic interaction between the CoHSII and the FeLSIII ions belonging to the core of the particles, thus confirming the previously published, though indirect XMCD measurements at K edges. Because of the surface sensitivity of XMCD at the L2,3 edges, the magnetic properties of the particle surface were also revealed. Surface CoHSII-FeLSIII pairs exhibit a weak ferromagnetic interaction. Thus, the magnetic structure of the photomagnetic RbCoFe 100 nm particles can be described as a ferrimagnetic core surrounded by a ferromagnetic shell. This finding brings new insights into the understanding of the complex magnetic properties of photoexcited RbCoFe and shows that the surface can have different magnetic behavior than the core. This should impact the nature of magnetic coupling in nanoparticles of CoFe PBA, where surface effect will dominate.

6.
Phys Chem Chem Phys ; 20(37): 23903-23912, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204179

RESUMO

The absence of an extensive series of Sc K-edge X-ray absorption near-edge structure spectroscopy (XANES) reference spectra and the scarcity of direct structural data on Sc are major hurdles to develop our understanding of Sc chemistry. However, this first step is essential to develop new Sc-based applications and to better understand the formation of Sc deposits. Here, we present a detailed comparative study of Sc K-edge XANES spectra of three Sc-bearing compounds: a garnet (Ca3Sc2Si3O12), an oxide (Sc2O3) and a phosphate (ScPO4·2H2O). First-principles calculations have been performed to interpret the origin of the K pre-edge spectral features. We demonstrate the validity of our approach by reproducing satisfyingly the experimental spectra. The densities of states projected on the absorbing Sc atom and its first neighbours give the possibility to interpret the position and intensity of the pre-edge XANES features in terms of Sc local environment. The pre-edge features provide information on p-d mixing of the absorber orbitals giving clues on the centrosymmetry of the site and on the mixing of the empty 4p orbitals of the absorber with empty 3d orbitals of the neighbours via the empty p orbitals of the ligands. We also show that these features give a first estimate of the crystal-field splitting energy (ca. 1.5 eV), inaccessible using other spectroscopic methods. Comparisons with K-edge spectra of other 3d0 ions from the literature reveal the specificities of the Sc pre-edge, indicating that core-hole screening is weaker than for Ti4+-bearing compounds. This study provides a dataset of spectral signatures and a theoretical basis for their interpretation, a requirement for future studies on Sc chemical form in synthetic and natural systems.

7.
Inorg Chem ; 55(14): 6980-7, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27385292

RESUMO

Photomagnetism in three-dimensional Co/Fe Prussian blue analogues is a complex phenomenon, whose detailed mechanism is not yet fully understood. Recently, researchers have been able to prepare molecular fragments of these networks using a building block synthetic approach from mononuclear precursors. The main objective in this strategy is to isolate the smallest units that show an intramolecular electron transfer to have a better understanding of the electronic processes. A prior requirement to the development of this kind of system is to understand to what extent electronic and magnetic properties are inherited from the corresponding precursors. In this work, we investigate the electronic and magnetic properties of the FeTp precursor (N(C4H9)4)[TpFe(III)(CN)3], (Tp being tris-pyrazolyl borate) of a recently reported binuclear cyanido-bridged Fe/Co complex. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements at the Fe L2,3 edges (2p → 3d) supported by ligand field multiplet calculations have allowed to determine the spin and orbit magnetic moments. Inaccuracy of the spin sum rule in the case of low-spin Fe(III) ion was demonstrated. An exceptionally large value of the orbital magnetic moment is found (0.9 µB at T = 2 K and B = 6.5 T) that is likely to play an important role in the magnetic and photomagnetic properties of molecular Fe/Co Prussian blue analogues.

8.
Phys Chem Chem Phys ; 14(16): 5581-7, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22428166

RESUMO

X-Ray Raman Spectroscopy (XRS) is used to study the electronic properties of bulk lithium borohydride (LiBH(4)) and LiBH(4) in porous carbon nano-composites (LiBH(4)/C) during dehydrogenation. The lithium (Li), boron (B) and carbon (C) K-edges are studied and compared with calculations of the starting material and intermediate compounds. Comparison of the B and C K-edge XRS spectra of the as-prepared samples with rehydrogenated samples shows that the B and C electronic structure is largely regained after rehydrogenation. Both Li and C K-edge spectra show that during dehydrogenation, part of the Li intercalates into the porous carbon. This study shows that XRS in combination with calculations is a promising tool to study the electronic properties of nano-crystalline light-weight materials for energy storage.


Assuntos
Boroidretos/química , Compostos de Lítio/química , Nanotubos de Carbono/química , Porosidade , Análise Espectral Raman , Propriedades de Superfície
9.
Phys Rev Lett ; 105(3): 037202, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867798

RESUMO

A large enhancement of the x-ray magnetic circular dichroism is observed at the iron K absorption preedge of magnetite. This is achieved by performing resonant inelastic x-ray scattering (RIXS) experiments with a 2p hole in the final state of the second-order optical process. We measured and calculated the full 1s2p RIXS planes for opposite helicities of the incoming circularly polarized x rays. The crystal field multiplet calculations show that the enhancement arises from 2p-3d Coulomb repulsions and 2p and 3d spin-orbit coupling. The observed magnitude of the RIXS magnetic circular dichroism effect is ∼16%. This opens up new opportunities for a broad range of research fields allowing for truly bulk-sensitive, element-, and site-selective measurements of 3d transition metal magnetic moments and their ordering using hard x-ray photons.

10.
Phys Chem Chem Phys ; 12(21): 5619-33, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20431827

RESUMO

We first present an extended introduction of the various methods used to extract electronic and structural information from the K pre-edge X-ray absorption spectra of 3d transition metal ions. The K pre-edge structure is then modelled for a selection of 3d transition metal compounds and analyzed using first-principles calculations based on the density functional theory (DFT) in the local density approximation (LDA). The selected compounds under study are presented in an ascending order of electronic structure complexity, starting with the Ti K-edge of rutile and anatase, and finishing with the Fe K-edge of the cyanomet-myoglobin. In most cases, the calculations are compared to polarized experimental spectra. It is shown that DFT-LDA methods enable us to reproduce satisfactorily the experimental features and to understand the nature of the electronic transitions involved in the pre-edge region. The limiting aspects of such methods in modelling the core-hole electron interaction and the 3d electron-electron repulsion are also pointed out.


Assuntos
Elétrons , Elementos de Transição/química , Espectroscopia por Absorção de Raios X , Cristalografia por Raios X , Compostos Ferrosos/química , Mioglobina/química , Titânio/química
11.
Nanoscale ; 12(31): 16420-16426, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32744559

RESUMO

We show that the properties of superparamagnetic iron oxide nanoparticles suspended in liquids can be effectively studied using Magnetic Circular Dichroism in Resonant Inelastic X-ray Scattering. Analysis of the spectral shape and magnetic contrast produced by this experiment enables an assessment of the site distribution and magnetic state of metal ions in the spinel phase. The selective magnetization profile of particles as derived from the field dependence of dichroism empowers an estimation of particle size distribution. Furthermore, the new proposed methodology discriminates sizes that are below the detection limits of X-ray and light scattering probes and that are difficult to spot in TEM.

12.
Nanoscale ; 12(20): 11222-11231, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32412032

RESUMO

Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture. We found that the association of soft and hard magnetic nanoparticles in the fluid has a considerable influence on their inherent magnetic properties. While the ferrofluid remains in a single phase, magnetic interactions at the nanoscale between both types of particles induce a modification of their respective coercive fields. By connecting the microscopic properties of binary ferrofluids containing small particles, our findings lay the groundwork for the manipulation of magnetic interactions between particles at the nanometer scale in magnetic liquids.

13.
Nanoscale ; 11(42): 20006-20014, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31603165

RESUMO

Thin films of an iron(ii) complex with a photochromic diarylethene-based ligand and featuring a spin-crossover behaviour have been grown by sublimation in ultra-high vacuum on highly oriented pyrolytic graphite and spectroscopically characterized through high-resolution X-ray and ultraviolet photoemission, as well as via X-ray absorption. Temperature-dependent studies demonstrated that the thermally induced spin-crossover is preserved at a sub-monolayer (0.7 ML) coverage. Although the photochromic ligand ad hoc integrated into the complex allows the photo-switching of the spin state of the complex at room temperature both in bulk and for a thick film on highly oriented pyrolytic graphite, this photomagnetic effect is not observed in sub-monolayer deposits. Ab initio calculations justify this behaviour as the result of specific adsorbate-substrate interactions leading to the stabilization of the photoinactive form of the diarylethene ligand over photoactive one on the surface.

15.
J Phys Condens Matter ; 28(50): 505202, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27783570

RESUMO

X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of ∼4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

16.
J R Soc Interface ; 13(121)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27512138

RESUMO

The biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science due to the precise morphology of the particles, the chain-like assembly and their unique magnetic properties. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. Despite some successful outcomes, the coordination chemistry and magnetism of such metal-doped magnetosomes still remain largely unknown. Here, we present new evidences from X-ray magnetic circular dichroism (XMCD) for element- and site-specific magnetic analyses that cobalt is incorporated in the spinel structure of the magnetosomes within Magnetospirillum magneticum AMB-1 through the replacement of Fe(2+) ions by Co(2+) ions in octahedral (Oh) sites of magnetite. Both XMCD at Fe and Co L2,3 edges, and energy-dispersive X-ray spectroscopy on transmission electron microscopy analyses reveal a heterogeneous distribution of cobalt occurring either in different particles or inside individual particles. Compared with non-doped one, cobalt-doped magnetosome sample has lower Verwey transition temperature and larger magnetic coercivity, related to the amount of doped cobalt. This study also demonstrates that the addition of trace cobalt in the growth medium can significantly improve both the cell growth and the magnetosome formation within M. magneticum AMB-1. Together with the cobalt occupancy within the spinel structure of magnetosomes, this study indicates that MTB may provide a promising biomimetic system for producing chains of metal-doped single-domain magnetite with an appropriate tuning of the magnetic properties for technological and biomedical applications.


Assuntos
Cobalto/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Dicroísmo Circular , Cobalto/farmacologia , Difração de Raios X
17.
J Phys Chem C Nanomater Interfaces ; 119(11): 5888-5902, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25838847

RESUMO

Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.

18.
Nanoscale ; 6(20): 11911-20, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25174899

RESUMO

Core-shell nanoparticles attract continuously growing interest due to their numerous applications, which are driven by the possibility of tuning their functionalities by adjusting structural and morphological parameters. However, despite the critical role interdiffused interfaces may have in the properties, these are usually only estimated in indirect ways. Here we directly evidence the existence of a 1.1 nm thick (Fe,Mn)3O4 interdiffused intermediate shell in nominally γ-Fe2O3-Mn3O4 core-shell nanoparticles using resonant inelastic X-ray scattering spectroscopy combined with magnetic circular dichroism (RIXS-MCD). This recently developed magneto-spectroscopic probe exploits the unique advantages of hard X-rays (i.e., chemical selectivity, bulk sensitivity, and low self-absorption at the K pre-edge) and can be advantageously combined with transmission electron microscopy and electron energy loss spectroscopy to quantitatively elucidate the buried internal structure of complex objects. The detailed information on the structure of the nanoparticles allows understanding the influence of the interface quality on the magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA