Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Med Mycol ; 58(4): 530-542, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504755

RESUMO

Candida albicans can form biofilm on tissues and medical devices, becoming, in that case, less susceptible to antifungal agents. Treatment of candidiasis associated with the formation of C. albicans biofilms is restricted to echinocandins and lipid forms of amphotericin B. This study investigated the activity of micafungin and resveratrol modified molecule (EB487) against C. albicans biofilms. The anti-biofilm growth (Bgrowth) and anti-preformed biofilm (Bpreformed) activities of micafungin (0 to 3.94 µM) and EB487 (0 to 20.32 mM) were comparatively studied separately and combined, using XTT, flow cytometry and cell counts approaches. Concentrations causing 50% inhibition of the studied steps (IC50) were evaluated. When tested separately, IC50 Bgrowth was obtained for 4.8 mM and 0.13 µM of EB487 and micafungin respectively, and IC50 Bpreformed for 3.6 mM and 0.06 µM of EB487 and micafungin respectively. Micafungin used alone was not able to totally eradicate fungi. Micafungin combined with EB487 displayed synergistic activity (both anti-growth- and anti-preformed biofilm-activities). Optimal combination concentrations were EB487 (≤9.12 mM -strain ATCC 28367™ or ≤8.12 mM -strain CAI4-p), micafungin (≤0.05 µM for both) and caused a total eradication of fungi. Dose reduction indexes obtained using these concentrations were at least 9 (micafungin) and 3.2 (EB487) for both anti-biofilm growth- and anti-preformed biofilm-activities. Combinations indexes were consistently below one, demonstrating a synergistic relationship between micafungin and EB487 in these conditions. This study demonstrated the strong anti-biofilm activity of EB487 and highlighted its synergistic potential when combined with micafungin. EB487 is a promising semi-synthetic molecule with prophylactic and curative interests in fighting C. albicans biofilms.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Resveratrol/farmacologia , Antifúngicos/síntese química , Biofilmes/crescimento & desenvolvimento , Candida albicans/classificação , Sinergismo Farmacológico , Concentração Inibidora 50 , Micafungina/farmacologia , Testes de Sensibilidade Microbiana , Estudo de Prova de Conceito , Resveratrol/síntese química
2.
Mar Drugs ; 13(4): 2541-58, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25913708

RESUMO

A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database including retention time and accurate masses of parent and fragment ions. Using this database, seven pigments or derivatives previously reported in Pp were unequivocally identified: ß,ß-carotene, chlorophyll a, zeaxanthin, chlorophyllide a, pheophorbide a, pheophytin a, and cryptoxanthin. Minor amounts of Divinyl chlorophyll a, a chemotaxonomic pigment marker for prochlorophytes, were also unequivocally identified using the database. Additional analysis of ionization and fragmentation patterns indicated the presence of ions that could correspond to hydroxylated derivatives of chlorophyll a and pheophytin a, produced during the ethanolic extraction, as well as previously described galactosyldiacylglycerols, the thylakoid coenzyme plastoquinone, and gracilamide B, a molecule previously reported in the red seaweed Gracillaria asiatica. These data point to UPLC-MSE as an efficient technique to identify phytoplankton pigments for which standards are available, and demonstrate its major interest as a complementary method for the structural elucidation of ionizable marine molecules.


Assuntos
Fitoplâncton/metabolismo , Pigmentos Biológicos/biossíntese , Porphyridium/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclopropanos/química , Ciclopropanos/isolamento & purificação , Ciclopropanos/metabolismo , Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Galactolipídeos/biossíntese , Galactolipídeos/química , Galactolipídeos/isolamento & purificação , Hidroxilação , Metabolômica/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Microalgas/metabolismo , Estrutura Molecular , Peso Molecular , Fotobiorreatores , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Extratos Vegetais/química , Plastoquinona/química , Plastoquinona/isolamento & purificação , Plastoquinona/metabolismo , Porphyridium/crescimento & desenvolvimento , Porphyridium/isolamento & purificação , Software , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
Mar Drugs ; 11(11): 4390-406, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24189278

RESUMO

The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg · mL(-1). Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg · mL(-1). Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, ß-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and ß-cryptoxanthin in melanoma cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cyanophora/química , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Pigmentos Biológicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Criptoxantinas , Cyanophora/metabolismo , Feminino , Humanos , Células MCF-7 , Pigmentos Biológicos/química , Neoplasias Cutâneas , Xantofilas/química , Xantofilas/farmacologia , Zeaxantinas , Melanoma Maligno Cutâneo
4.
Front Cell Infect Microbiol ; 11: 698883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604104

RESUMO

Lichens, due to their symbiotic nature (association between fungi and algae), constitute a chemical factory of original compounds. Polyphenolic compounds (depsides and depsidones) are the main constituents of lichens and are exclusively biosynthesized by these organisms. A panel of 11 polyphenols was evaluated for their anti-biofilm activity against Candida albicans biofilms on the maturation phase (anti-maturation) (MMIC50) as well as on preformed 24-h-old biofilm (anti-biofilm) (MBIC50) using the XTT assay. Minimum inhibitory concentrations of compounds (MICs) against C. albicans planktonic yeast were also determined using a broth microdilution method. While none of the tested compounds were active against planktonic cells (IC50 > 100 µg/ml), three depsides slowed the biofilm maturation (MMIC50 ≤12.5 µg/ml after 48 h of contact with Candida cells). Evernic acid was able to both slow the maturation and reduce the already formed biofilms with MBIC50 ≤12.5 µg/ml after 48 h of contact with the biofilm. This compound shows a weak toxicity against HeLa cells (22%) at the minimal active concentration and no hemolytic activity at 100 µg/ml. Microscopic observations of evernic acid and optimization of its solubility were performed to further study this compound. This work confirmed the anti-biofilm potential of depsides, especially evernic acid, and allows to establish the structure-activity relationships to better explain the anti-biofilm potential of these compounds.


Assuntos
Candida albicans , Líquens , Antifúngicos , Biofilmes , Células HeLa , Humanos , Testes de Sensibilidade Microbiana
5.
Int J Food Microbiol ; 333: 108798, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32771821

RESUMO

Biopreservation of dairy products by acid lactic bacteria appears as a promising alternative to either replace or reduce the use of chemical preservatives. This study aimed at the identification of bacteria preventing fungal spoilers growth in dairy products, and, at the understanding of their antifungal activity. First, antifungal activity of eighteen Lactobacillus strains was tested against five molds and four yeasts leading to selection of L. casei 7006 which had an activity against seven fungal targets. Then, challenge tests against C. lusistaniae 3668 in a cheese-mimicking matrix have been performed demonstrating that this strain was able to reduce strongly this yeast growth after 14 and 21 days storages at 7 °C. Antifungal compounds produced in cheese-mimicking matrix containing L. casei 7006 strain were quantified, then compared to the one prepared with an inactive strain (L. casei 6960) or without Lactobacillus strain. Three compounds were differently produced between cheeses with or without Lactobacillus strain after 21 days at 7 °C: lactic acid, benzoic acid and diacetyl. However, lactic acid concentrations were similar between the three cheeses after 14 days at 7 °C, but an antifungal activity was only associated to L. casei 7006 presence. Benzoic acid concentrations between cheese with L. casei 7006 and negative control L. casei 6960 were also the same. Among the antifungal molecules retrieved from these analyses, diacetyl was the most significantly overproduced in cheese containing L. casei 7006, thus this volatile was associated to the antifungal activity of this strain.


Assuntos
Antibiose/fisiologia , Queijo/microbiologia , Conservantes de Alimentos/análise , Lactobacillus/metabolismo , Antifúngicos/análise , Ácido Benzoico/análise , Diacetil/análise , Microbiologia de Alimentos , Ácido Láctico/análise , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Leveduras
6.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353173

RESUMO

Candida albicans is an opportunistic pathogen involved in many infections, especially linked to implanted medical devices. Its ability to form biofilms complicates the treatment of these infections as few molecules are active against sessile C. albicans. The aim of this study was to evaluate the potential of leaves, three-month-old and one-year-old stems of Rubus idaeus L. against C. albicans biofilm growth. Extractions with a polarity gradient were carried out on hydroacetonic extracts and followed by fractionation steps. The obtained extracts and fractions were tested for their anti-biofilm growth activity against C. albicans using XTT method. Compounds of active subfractions were identified by LC-MS. The hexane extracts from leaves and stems were the most active against the fungus with IC50 at 500 and 250 µg/mL. Their bioguided fractionation led to 4 subfractions with IC50 between 62.5 and 125 µg/mL. Most of the components identified in active subfractions were fatty acids and terpenoïds.

7.
Int J Antimicrob Agents ; 52(6): 947-953, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179710

RESUMO

Candida spp., especially Candida albicans, is one of the main colonisers of the oral cavity. Due to its ability to form biofilms, it can be implicated in dental caries, periodontal disease and denture stomatitis. Microbial cells in biofilms are minimally impacted by conventional drugs. The aim of this study was to find new substances able to inhibit the adhesion of Candida spp. in order to prevent biofilm formation in the oral cavity. This study focused on the red raspberry (Rubus idaeus) fruit, known for its richness in potentially antimicrobial tannins. Extraction with a polarity gradient was performed on acetone extracts from frozen ripe and unripe fruits, resulting in eight extracts. The antifungal and anti-adhesion effects of the extracts were determined using broth microdilution and XTT methods, respectively, against C. albicans, Candida glabrata and Candida parapsilosis strains. Interestingly, four extracts (hexane and ethyl acetate) displayed anti-adhesion activity against C. albicans at low concentrations [50% inhibitory concentration (IC50) 15.6-62.5 µg/mL]. Bioassay-guided fractionation by chromatographic methods of the most active extract obtained from ripe fruit (ethyl acetate extract) led to two subfractions enriched in anti-adhesion compounds, identified by mass spectrometry analysis as hydrolysable and condensed tannins. Their activities were dose-dependent with maximum inhibition at 80% (IC50 = 25 µg/mL and 12.5 µg/mL). Regarding antifungal activity, no extract was active against planktonic cells of the tested strains. This work highlights for the first time the potential of raspberries to prevent oral C. albicans biofilms.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubus/química , Antifúngicos/isolamento & purificação , Candida albicans/fisiologia , Candida glabrata/fisiologia , Candida parapsilosis/fisiologia , Formazans/análise , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Coloração e Rotulagem/métodos
8.
Appl Biochem Biotechnol ; 175(1): 1-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25231233

RESUMO

In the present study, microwave-assisted extraction was first employed to extract the phycobiliproteins of Porphyridium purpureum (Pp). Freeze-dried Pp cells were subjected to microwave-assisted extraction (MAE) to extract phycoerythin (PE), phycocyanin (PC), and allophycocyanin (APC). MAE combined reproducibility and high extraction yields and allowed a 180- to 1,080-fold reduction of the extraction time compared to a conventional soaking process. The maximal PE extraction yield was obtained after 10-s MAE at 40 °C, and PE was thermally damaged at temperatures higher than 40 °C. In contrast, a flash irradiation for 10 s at 100 °C was the best process to efficiently extract PC and APC, as it combined a high temperature necessary to extract them from the thylakoid membrane to a short exposure to thermal denaturation. The extraction order of the three phycobiliproteins was coherent with the structure of Pp phycobilisomes. Moreover, the absorption and fluorescence properties of MAE extracted phycobiliproteins were stable for several months after the microwave treatment. Scanning electron microscopy indicated that MAE at 100 °C induced major changes in the Pp cell morphology, including fusion of the exopolysaccharidic cell walls and cytoplasmic membranes of adjacent cells. As a conclusion, MAE is a fast and high yield process efficient to extract and pre-purify phycobiliproteins, even from microalgae containing a thick exopolysaccharidic cell wall.


Assuntos
Ficobiliproteínas/isolamento & purificação , Ficocianina/isolamento & purificação , Ficoeritrina/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Micro-Ondas , Ficobiliproteínas/química , Ficocianina/química , Ficoeritrina/química , Porphyridium/química
9.
Rev. bras. farmacogn ; 28(4): 457-467, July-Aug. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-958892

RESUMO

Abstract Zeaxanthin, an abundant carotenoid present in fruits, vegetables and algae was reported to exert antiproliferative activity and induce apoptosis in human uveal melanoma cells. It also inhibited uveal melanoma tumor growth and cell migration in nude mice xenograft models. Here we report that zeaxanthin purified from the rhodophyte Porphyridium purpureum (Bory) K.M.Drew & R.Ross, Porphyridiaceae, promotes apoptosis in the A2058 human melanoma cell line expressing the oncogenic BRAF V600E mutation. Zeaxanthin 40 µM (IC50) induced chromatin condensation, nuclear blebbing, hypodiploidy, accumulation of cells in sub-G1 phase, DNA internucleosomal fragmentation and activation of caspase-3. Western blot analysis revealed that zeaxanthin induced up-regulation of the pro-apoptotic factors Bim and Bid and inhibition of NF-κB transactivation. Additionally, zeaxanthin sensitized A2058 melanoma cells in vitro to the cytotoxic activity of vemurafenib, a BRAF inhibitor widely used for the clinical management of melanoma, suggesting its potential interest as dietary adjuvant increasing melanoma cells sensitivity to chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA