Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 102(8): 805-813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35354915

RESUMO

Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice improves outcomes in a model of vascular insufficiency. Townes AA (wild type) and SS (sickle cell) mice were treated with either L-Arginine (5% in drinking water), L-NAME (N(ω)-nitro-L-arginine methyl ester; 1 g/L in drinking water) or NO-generating hydrogel (PA-YK-NO), then subjected to hindlimb ischemia via femoral artery ligation and excision. Perfusion recovery was monitored over 28 days via LASER Doppler perfusion imaging. Consistent with previous findings, perfusion was impaired in SS mice (63 ± 4% of non-ischemic limb perfusion in AA vs 33 ± 3% in SS; day 28; P < 0.001; n = 5-7) and associated with increased necrosis. L-Arginine treatment had no significant effect on perfusion recovery or necrosis (n = 5-7). PA-YK-NO treatment led to worsened perfusion recovery (19 ± 3 vs. 32 ± 3 in vehicle-treated mice; day 7; P < 0.05; n = 4-5), increased necrosis score (P < 0.05, n = 4-5) and a 46% increase in hindlimb peroxynitrite (P = 0.055, n = 4-5). Interestingly, L-NAME worsened outcomes in SS mice with decreased in vivo lectin staining following ischemia (7 ± 2% area in untreated vs 4 ± 2% in treated mice, P < 0.05, n = 5). Our findings demonstrate that L-arginine and direct NO delivery both fail to improve postischemic neovascularization in SCD. Addition of NO to the inflammatory, oxidative environment in SCD may result in further oxidative stress and limit recovery.


Assuntos
Anemia Falciforme , Água Potável , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Disponibilidade Biológica , Água Potável/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia , Camundongos , Músculo Esquelético/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Necrose/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional
2.
Circulation ; 136(20): 1939-1954, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28972000

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. METHODS: We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3ß inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5+ cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. RESULTS: The resultant hPSC-derived CDH5+ cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. CONCLUSIONS: We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs.


Assuntos
Células Endoteliais da Veia Umbilical Humana/transplante , Isquemia/terapia , Metaloproteinase 2 da Matriz/administração & dosagem , Nanoestruturas/administração & dosagem , Oligopeptídeos/administração & dosagem , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Células Endoteliais/fisiologia , Células Endoteliais/transplante , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Nus , Células-Tronco Pluripotentes/fisiologia , Distribuição Aleatória , Resultado do Tratamento
3.
Adv Exp Med Biol ; 1064: 123-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471030

RESUMO

Cardiovascular disease is the number one cause of death in the U.S and results in the loss of approximately one million lives and more than 400 billion U.S. dollars for treatments every year. Recently, tissue engineered blood vessels have been studied and developed as promising replacements for treatment with autologous veins. Here, we summarize the cell sources and methods to make tissue-engineered blood vessels (TEBVs), the recent progress in TEBV related research, and also the recent progress in TEBV related clinical studies.


Assuntos
Vasos Sanguíneos , Doenças Cardiovasculares/terapia , Engenharia Tecidual , Humanos
4.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833950

RESUMO

In the past decade, the self-immolative biodegradable polymer arose as a novel paradigm for its efficient degradation mechanism and vast potential for advanced biomedical applications. This study reports successful synthesis of a novel biodegradable polymer capable of self-immolative backbone cleavage. The monomer is designed by covalent conjugations of both pendant redox-trigger (p-nitrobenzyl alcohol) and self-immolative linker (p-hydroxybenzyl alcohol) to the cyclization spacer (n-2-(hydroxyethyl)ethylene diamine), which serves as the structural backbone. The polymerization of the monomer with hexamethylene diisocyanate yields a linear redox-sensitive polymer that can systemically degrade via sequential 1,6-elimination and 1,5-cyclization reactions within an effective timeframe. Ultimately, the polymer's potential for biomedical application is simulated through in vitro redox-triggered release of paclitaxel from polymeric nanoparticles.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Plásticos Biodegradáveis/uso terapêutico , Ciclização , Humanos , Isocianatos/química , Nanopartículas/uso terapêutico , Oxirredução , Paclitaxel/química , Paclitaxel/uso terapêutico , Polimerização , Polímeros/uso terapêutico
5.
Nanotechnology ; 25(42): 425103, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25277401

RESUMO

Enhancing therapeutic efficacy is essential for successful treatment of chemoresistant cancers such as metastatic hormone-refractory prostate cancer (HRPC). To improve the efficacy of doxorubicin (DOX) for treating chemoresistant disease, the feasibility of using nanodiamond (ND) particles was investigated. Utilizing the pH responsive properties of ND, a novel protocol for complexing NDs and DOX was developed using a pH 8.5 coupling buffer. The DOX loading efficiency, loading on the NDs, and pH responsive release characteristics were determined utilizing UV-Visible spectroscopy. The effects of the ND-DOX on HRPC cell line PC3 were evaluated with MTS and live/dead cell viability assays. ND-DOX displayed exceptional loading efficiency (95.7%) and drug loading on NDs (23.9 wt%) with optimal release at pH 4 (80%). In comparison to treatment with DOX alone, cell death significantly increased when cells were treated with ND-DOX complexes demonstrating a 50% improvement in DOX efficacy. Of the tested treatments, ND-DOX with 2.4 µg mL(-1) DOX exhibited superior efficacy (60% cell death). ND-DOX with 1.2 µg mL(-1) DOX achieved 42% cell death, which was comparable to cell death in response to 2.4 µg mL(-1) of free DOX, suggesting that NDs aid in decreasing the DOX dose necessary to achieve a chemotherapeutic efficacy. Due to its enhanced efficacy, ND-DOX can be used to successfully treat HRPC and potentially decrease the clinical side effects of DOX.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanodiamantes/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Humanos , Masculino , Nanodiamantes/química , Nanodiamantes/ultraestrutura
6.
Biomaterials ; 305: 122450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169190

RESUMO

In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Macrófagos , Células Espumosas , Monócitos , Expressão Gênica , Miócitos de Músculo Liso
7.
Tissue Eng Regen Med ; 20(4): 523-538, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36892736

RESUMO

During high-throughput drug screening, in vitro models are fabricated and the effects of therapeutics on the models evaluated in high throughput-for example, with automated liquid handling systems and microplate reader-based high-throughput screening (HTS) assays. The most frequently-used model systems for HTS, 2D models, do not adequately model the in vivo 3D microenvironment-an important aspect of which is the extracellular matrix-and therefore, 2D models may not be appropriate for drug screening. Instead, tissue-engineered 3D models with extracellular matrix-mimicking components are destined to become the preferred in vitro systems for HTS. However, for 3D models, such as 3D cell-laden hydrogels and scaffolds, cell sheets, and spheroids as well as 3D microfluidic and organ-on-a-chip systems, to replace 2D models in HTS, they must be compatible with high-throughput fabrication schemes and evaluation methods. In this review, we summarize HTS in 2D models and discuss recent studies that have successfully demonstrated HTS-compatible 3D models of high-impact diseases, such as cancers or cardiovascular diseases.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias , Humanos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos , Engenharia Tecidual , Hidrogéis/farmacologia , Microambiente Tumoral
8.
Biomater Res ; 27(1): 34, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087537

RESUMO

BACKGROUND: Capsular contracture is a critical complication of silicone implantation caused by fibrotic tissue formation from excessive foreign body responses. Various approaches have been applied, but targeting the mechanisms of capsule formation has not been completely solved. Myofibroblast differentiation through the transforming growth factor beta (TGF-ß)/p-SMADs signaling is one of the key factors for capsular contracture development. In addition, biofilm formation on implants may result chronic inflammation promoting capsular fibrosis formation with subsequent contraction. To date, there have been no approaches targeting multi-facted mechanisms of capsular contracture development. METHODS: In this study, we developed a multi-targeting nitric oxide (NO) releasing bionanomatrix coating to reduce capsular contracture formation by targeting myofibroblast differentiation, inflammatory responses, and infections. First, we characterized the bionanomatrix coating on silicon implants by conducting rheology test, scanning electron microcsopy analysis, nanoindentation analysis, and NO release kinetics evaluation. In addition, differentiated monocyte adhesion and S. epidermidis biofilm formation on bionanomatrix coated silicone implants were evaluated in vitro. Bionanomatrix coated silicone and uncoated silicone groups were subcutaneously implanted into a mouse model for evaluation of capsular contracture development for a month. Fibrosis formation, capsule thickness, TGF-ß/SMAD 2/3 signaling cascade, NO production, and inflammatory cytokine production were evaluated using histology, immunofluorescent imaging analysis, and gene and protein expression assays. RESULTS: The bionanomatrix coating maintained a uniform and smooth surface on the silicone even after mechanical stress conditions. In addition, the bionanomatrix coating showed sustained NO release for at least one month and reduction of differentiated monocyte adhesion and S. epidermidis biofilm formation on the silicone implants in vitro. In in vivo implantation studies, the bionanomatrix coated groups demonstrated significant reduction of capsule thickness surrounding the implants. This result was due to a decrease of myofibroblast differentiation and fibrous extracellular matrix production through inhibition of the TGF-ß/p-SMADs signaling. Also, the bionanomatrix coated groups reduced gene expression of M1 macrophage markers and promoted M2 macrophage markers which indicated the bionanomatrix could reduce inflammation but promote healing process. CONCLUSIONS: In conclusion, the bionanomatrix coating significantly reduced capsular contracture formation and promoted healing process on silicone implants by reducing myfibroblast differentiation, fibrotic tissue formation, and inflammation. A multi-targeting nitric oxide releasing bionanomatrix coating for silicone implant can reduce capsular contracture and improve healing process. The bionanomatrix coating reduces capsule thickness, α-smooth muscle actin and collagen synthesis, and myofibroblast differentiation through inhibition of TGF-ß/SMADs signaling cascades in the subcutaneous mouse models for a month.

9.
ACS Appl Mater Interfaces ; 14(17): 19104-19115, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467831

RESUMO

Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.


Assuntos
Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Insulina , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
10.
ACS Appl Mater Interfaces ; 14(46): 51728-51743, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346768

RESUMO

Cardiovascular stent technologies have significantly improved over time. However, their optimal performance remains limited by restenosis, thrombosis, inflammation, and delayed re-endothelialization. Current stent designs primarily target inhibition of neointimal proliferation but do not promote functional arterial healing (pro-healing) in order to restore normal vascular reactivity. The endothelial lining that does develop with current stents appears to have loose intracellular junctions. We have developed a pro-healing nanomatrix coating for stents that enhances healing while limiting neointimal proliferation. This builds on our prior work evaluating the effects of the pro-healing nanomatrix coating on cultures of vascular endothelial cells (ECs), smooth muscle cells (SMCs), monocytes, and platelets. However, when a stent is deployed in an artery, multiple vascular cell types interact, and their interactions affect stent performance. Thus, in our current study, an in vitro vascular double-layer (VDL) system was used to observe stent effects on communication between different vascular cell types. Additionally, we assessed the pro-healing ability and vascular cell interactions after stent deployment in the VDL system and in a rabbit model, evaluating the nanomatrix-coated stent compared to a commercial bare metal stent (BMS) and a drug eluting stent (DES). In vitro results indicated that, in a layered vascular structure, the pro-healing nanomatrix-coated stent could (1) improve endothelialization and endothelial functions, (2) regulate SMC phenotype to reduce SMC proliferation and migration, (3) suppress inflammation through a multifactorial manner, and (4) reduce foam cell formation, extracellular matrix remodeling, and calcification. Consistent with this, in vivo results demonstrated that, compared with commercial BMS and DES, this pro-healing nanomatrix-coated stent enhanced re-endothelialization with negligible restenosis, inflammation, or thrombosis. Thus, these findings indicate the unique pro-healing features of this nanomatrix stent coating with superior efficacy over commercial BMS and DES.


Assuntos
Stents Farmacológicos , Trombose , Animais , Coelhos , Células Endoteliais/metabolismo , Stents , Neointima , Trombose/metabolismo , Inflamação/metabolismo
11.
Biomaterials ; 280: 121254, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836683

RESUMO

Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.


Assuntos
Fístula Arteriovenosa , Remodelação Vascular , Animais , Fístula Arteriovenosa/terapia , Humanos , Hiperplasia , Camundongos , Óxido Nítrico , Ratos , Roedores
12.
Adv Drug Deliv Rev ; 170: 142-199, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428994

RESUMO

Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.


Assuntos
Aterosclerose , Nanoestruturas , Animais , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico
13.
Front Cardiovasc Med ; 8: 790529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155603

RESUMO

Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.

14.
ACS Appl Bio Mater ; 4(6): 4917-4924, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007040

RESUMO

Blood clots (90%) originate from the left atrial appendage (LAA) in non-valvular atrial fibrillation patients and are a major cause of embolic stroke. Long-term anticoagulation therapy has been used to prevent thrombus formation, but its use is limited in patients at a high risk for bleeding complications. Thus, left atrial appendage closure (LAAC) devices for LAA occlusion are well-established as an alternative to the anticoagulation therapy. However, the anticoagulation therapy is still required for at least 45 days post-implantation to bridge the time until complete LAA occlusion by neoendocardium coverage of the device. In this study, we applied an endothelium-mimicking nanomatrix to the LAAC device membrane for delivery of nitric oxide (NO) to enhance endothelialization, with the goal of possibly being able to reduce the duration of the anticoagulation therapy. The nanomatrix was uniformly coated on the LAAC device membranes and provided sustained release of NO for up to 1 month in vitro. In addition, the nanomatrix coating promoted endothelial cell proliferation and reduced platelet adhesion compared to the uncoated device membranes in vitro. The nanomatrix-coated and uncoated LAAC devices were then deployed in a canine LAA model for 22 days as a pilot study. All LAAC devices were not completely covered by neoendocardium 22 days post-implantation. However, histology image analysis showed that the nanomatrix-coated LAAC device had thicker neoendocardium coverage compared to the uncoated device. Therefore, our in vitro and in vivo results indicate that the nanomatrix coating has the potential to enhance endothelialization on the LAAC device membrane, which could improve patient outcomes by shortening the need for extended anticoagulation treatment.


Assuntos
Apêndice Atrial/cirurgia , Procedimentos Cirúrgicos Cardíacos/instrumentação , Endotélio/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Anticoagulantes/administração & dosagem , Aorta/citologia , Aspirina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Células Endoteliais/efeitos dos fármacos , Endotélio/fisiologia , Humanos , Membranas Artificiais , Óxido Nítrico/administração & dosagem , Peptídeos/administração & dosagem , Adesividade Plaquetária/efeitos dos fármacos , Varfarina/administração & dosagem
15.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
16.
Nanomedicine ; 6(2): 289-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19800987

RESUMO

The goal of this study is to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles (PAs) through a solvent evaporation technique. Three PAs, one containing the Tyr-Ile-Gly-Ser-Arg (YIGSR) ligand, the second containing the Val-Ala-Pro-Gly (VAPG) ligand, and a third without cell adhesive ligands, were developed. Cell adhesion and spreading were evaluated by a PicoGreen-DNA assay and live/dead assay, respectively. Our results show that PA-YIGSR significantly enhances HUVEC adhesion (26,704 +/- 2708), spreading (84 +/- 8%), and proliferation (50 +/- 2%) compared with that of other PAs. PA-VAPG and PA-YIGSR showed significantly greater AoSMC adhesion compared with that of PA-S. PA-VAPG also showed significantly greater spreading of AoSMCs (63 +/- 11%) compared with that of other PAs. Also, all the PAs showed significantly reduced platelet adhesion compared with that of collagen I (control). These findings would facilitate the development of novel vascular grafts, heart valves, and cell-based therapies for cardiovascular diseases. FROM THE CLINICAL EDITOR: The goal of this study was to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles through a solvent evaporation technique. The findings are expected to facilitate the development of novel vascular grafts, heart valves, and cell based therapies for cardiovascular diseases.


Assuntos
Materiais Biomiméticos/química , Células Endoteliais/fisiologia , Miócitos de Músculo Liso/fisiologia , Nanoestruturas/química , Engenharia Tecidual/métodos , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Humanos , Miócitos de Músculo Liso/citologia
17.
Nano Converg ; 7(1): 6, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31984429

RESUMO

Atherosclerosis is a major contributor to many cardiovascular events, including myocardial infarction, ischemic stroke, and peripheral arterial disease, making it the leading cause of death worldwide. High-density lipoproteins (HDL), also known as "good cholesterol", have been shown to demonstrate anti-atherosclerotic efficacy through the removal of cholesterol from foam cells in atherosclerotic plaques. Because of the excellent anti-atherosclerotic properties of HDL, in the past several years, there has been tremendous attention in designing HDL mimicking nanoparticles (NPs) of varying functions to image, target, and treat atherosclerosis. In this review, we are summarizing the recent progress in the development of HDL mimicking NPs and their applications for atherosclerosis.

18.
J Mater Chem B ; 8(14): 2814-2825, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163093

RESUMO

We report a novel and facile organosilane plasma polymerization method designed to improve the surface characteristics of poly(tetrafluoroethylene) (PTFE). We hypothesized that the polymerized silane coating would provide an adhesive surface for endothelial cell proliferation due to a large number of surface hydroxyl groups, while the large polymer networks on the surface of PTFE would hinder platelet attachment. The plasma polymerized PTFE surfaces were then systematically characterized via different analytical techniques such as FTIR, XPS, XRD, Contact angle, and SEM. The key finding of the characterization is the time-dependent deposition of an organosilane layer on the surface of PTFE. This layer was found to provide favorable surface properties to PTFE such as a very high surface oxygen content, high hydrophilicity and improved surface mechanics. Additionally, in vitro cellular studies were conducted to determine the bio-interface properties of the plasma-treated and untreated PTFE. The important results of these experiments were rapid endothelial cell growth and decreased platelet attachment on the plasma-treated PTFE compared to untreated PTFE. Thus, this new surface modification technique could potentially address the current challenges associated with PTFE for blood contact applications, specifically poor endothelial cell growth and risk of thrombosis.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Organossilício/farmacologia , Politetrafluoretileno/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Plaquetas/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Compostos de Organossilício/síntese química , Compostos de Organossilício/química , Tamanho da Partícula , Adesividade Plaquetária/efeitos dos fármacos , Polimerização , Propriedades de Superfície
19.
J Clin Med ; 9(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033375

RESUMO

Dental pulp tissue exposed to mechanical trauma or cariogenic process results in root canal and/or periapical infections, and conventionally treated with root canal procedures. The more recent regenerative endodontic procedure intends to achieve effective root canal disinfection and adequate pulp-dentin tissue regeneration; however, numerous limitations are reported. Because tooth is composed of vital soft pulp enclosed by the mineralized hard tissue in a highly organized structure, complete pulp-dentin tissue regeneration has been challenging to achieve. In consideration of the limitations and unique dental anatomy, it is important to understand the healing and repair processes through inflammatory-proliferative-remodeling phase transformations of pulp-dentin tissue. Upon cause by infectious and mechanical stimuli, the innate defense mechanism is initiated by resident pulp cells including immune cells through chemical signaling. After the expansion of infection and damage to resident pulp-dentin cells, consequent chemical signaling induces pluripotent mesenchymal stem cells (MSCs) to migrate to the injury site to perform the tissue regeneration process. Additionally, innovative biomaterials are necessary to facilitate the immune response and pulp-dentin tissue regeneration roles of MSCs. This review highlights current approaches of pulp-dentin tissue healing process and suggests potential biomedical perspective of the pulp-dentin tissue regeneration.

20.
Nanomedicine (Lond) ; 15(11): 1113-1126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32292108

RESUMO

Aims: We investigated whether miRNA (miR) 146a-5p-loaded nanoparticles (NPs) can attenuate neuropathic pain behaviors in the rat spinal nerve ligation-induced neuropathic pain model by inhibiting activation of the NF-κB and p38 MAPK pathways in spinal microglia. Materials & methods: After NP preparation, miR NPs were assessed for their physical characteristics and then injected intrathecally into the spinal cords of rat spinal nerve ligation rats to test their analgesic effects. Results: miR NPs reduced pain behaviors for 11 days by negatively regulating the inflammatory response in spinal microglia. Conclusion: The anti-inflammatory effects of miR 146a-5p along with nanoparticle-based materials make miR NPs promising tools for treating neuropathic pain.


Assuntos
MicroRNAs , Nanopartículas , Neuralgia , Animais , Glicolatos , Glicóis , Ácido Láctico , MicroRNAs/genética , Microglia , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA