RESUMO
This study aimed to develop a method for standardized broth microdilution antimicrobial susceptibility testing (AST) of Avibacterium (Av.) paragallinarum, the causative agent of infectious coryza in chickens. For this, a total of 83 Av. paragallinarum isolates and strains were collected from 15 countries. To select unrelated isolates for method validation steps, macrorestriction analyses were performed with 15 Av. paragallinarum. The visible growth of Av. paragallinarum was examined in six broth media and growth curves were compiled. In Veterinary Fastidious Medium and cation-adjusted Mueller-Hinton broth (CAMHB) + 1% chicken serum + 0.0025% NADH (CAMHB + CS + NADH), visible growth of all isolates was detected and both media allowed adequate bacterial growth. Due to the better readability of Av. paragallinarum growth in microtiter plates, CAMHB + CS + NADH was chosen for AST. Repetitions of MIC testing with five epidemiologically unrelated isolates using a panel of 24 antimicrobial agents resulted in high essential MIC agreements of 96%-100% after 48-h incubation at 35 ± 2°C. Hence, the remaining 78 Av. paragallinarum were tested and demonstrated easily readable MICs with the proposed method. Differences in MICs were detected between isolates from different continents, with isolates from Africa showing lower MICs compared to isolates from America and Europe, which more often showed elevated MICs of aminoglycosides, quinolones, tetracyclines, and/or trimethoprim/sulfamethoxazole. PCR analyses of isolates used for method development revealed that isolates with elevated MICs of tetracyclines harbored the tetracycline resistance gene tet(B) but none of the other tested resistance genes were detected. Therefore, whole-genome sequencing data from 62 Av. paragallinarum were analyzed and revealed the presence of sequences showing nucleotide sequence identity to the genes aph(6)-Id, aph(3â³)-Ib, blaTEM-1B, catA2, sul2, tet(B), tet(H), and mcr-like. Overall, the proposed method using CAMHB + CS + NADH for susceptibility testing with 48-h incubation time at 35 ± 2°C in ambient air was shown to be suitable for Av. paragallinarum. Due to a variety of resistance genes detected, the development of clinical breakpoints is highly recommended. IMPORTANCE: Avibacterium paragallinarum is an important pathogen in veterinary medicine that causes infectious coryza in chickens. Since antibiotics are often used for treatment and resistance of the pathogen is known, targeted therapy should be given after resistance testing of the pathogen. Unfortunately, there is currently no accepted method in standards that allows susceptibility testing of this fastidious pathogen. Therefore, we have worked out a method that allows harmonized susceptibility testing of the pathogen. The method meets the requirements of the CLSI and could be used by diagnostic laboratories.
Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , NAD , Antibacterianos , Tetraciclina , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologiaRESUMO
Worldwide outbreaks make infections with pathogenic strains of Enterococcus cecorum (EC) one of the most important diseases in the broiler industry. Although research has increased knowledge about the pathogen, the transmission is not fully understood. Samples from different locations were collected from two broiler farms in Germany over a total of six production cycles. Samples were collected at days 1, 5, 10, 15, 21, 27, 34, 41 post-hatch and after cleaning and disinfection (C&D). A total of 1017 samples were collected from 25 different locations on the farms. Samples were analysed in the laboratory for EC by quantitative real-time PCR. Overall, 7.5% of the samples were positive. The probabilities for positive and negative samples did not differ between the farms. The number of findings differed significantly between the cycles. Compared to other samples, the chances of detecting EC in faecal samples were significantly higher. Most positive samples were found in the last week of the production periods, indicating an accumulation of EC in the barn environment. After C&D, positive PCR results were obtained in four out of 14 locations. A re-introduction from contaminated environment seemed possible. However, one pooled faecal sample was positive 1 day post-hatch. The locations that showed positive results after C&D and the positive faecal sample 1 day post-hatch indicated the persistence of EC in broiler houses of clinically healthy flocks that could lead to potential horizontal transmission routes. The present study detected potential EC sources and may help to improve hygienic measures to avoid transmissions.RESEARCH HIGHLIGHTSMethodology is suitable to detect EC during production and after C&D.Locations were detected that may serve as a reservoir for EC.Cycles with fewer positive samples were observed.Cleaning and disinfection had a major impact on the detection of EC.
Assuntos
Galinhas , Enterococcus , Fezes , Infecções por Bactérias Gram-Positivas , Abrigo para Animais , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , Fezes/microbiologia , Enterococcus/isolamento & purificação , Enterococcus/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/transmissão , Alemanha/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Desinfecção , Microbiologia AmbientalRESUMO
Avibacterium paragallinarum (A. paragallinarum) is the aetiological agent of infectious coryza (IC) in chickens and characterized by acute respiratory distress and severe drop in egg production. Vaccination is important in the control of IC outbreaks and the efficacy of vaccination is dependent on A. paragallinarum serovars included in the vaccine. Classical serotyping of A. paragallinarum is laborious and hampered by poor availability of antigens and antisera. The haemagglutinin, important in classical serotyping, is encoded by the HMTp210 gene. HMTp210 gene analysis has been shown to have potential as alternative to classical serotyping. The aim of the present study was to further investigate the potential of sequence analyses of partial region 1 of the HMTp210 gene, the HMTp210 hypervariable region and the concatenated sequences of both fragments. For this analysis, 123 HMTp210 gene sequences (field isolates, A. paragallinarum serovar reference strains and vaccine strains) were included. Evaluation of serovar references and vaccine strains revealed a need for critical evaluation, especially within Page serovar B and C. Phylogenetic analysis of HMTp210 region 1 resulted in a separation of Page serovar A, B and C strains. Analysis of the HMTp210 HVR alone was not sufficient to discriminate all nine different Kume serovar references. The concatenated sequences of HMTp210 region 1 and HMTp210 HVR resulted in 14 clusters with a high correlation with Page serovar and with the nine currently known Kume serovars and is therefore proposed as a novel genotyping method that could be used as an alternative for classical serotyping of A. paragallinarum.
Assuntos
Infecções por Haemophilus , Haemophilus paragallinarum , Doenças das Aves Domésticas , Animais , Sorotipagem/veterinária , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia , Genótipo , Filogenia , Galinhas , Haemophilus paragallinarum/genética , Doenças das Aves Domésticas/microbiologiaRESUMO
Avibacterium (Av.) gallinarum is an opportunistic pathogen in poultry, which, however, has also been associated with human disease. There is currently no approved method for antimicrobial susceptibility testing of this pathogen, so this study aimed at developing a harmonized broth microdilution method for Av. gallinarum that is suitable for diagnostic laboratories. For this, the Av. gallinarum CCUG 12391T type strain and 42 field isolates were collected and their species was confirmed by using a species-specific PCR assay and biochemical reactions. To select epidemiologically unrelated isolates, ApaI macrorestriction analysis was performed. Preliminary growth experiments were conducted with six culture media, and based on the results, four media were selected to compile growth curves with four isolates. Independent repetitions of MIC determinations were then performed to evaluate the reproducibility of the values. Cation-adjusted Mueller-Hinton broth (CAMHB) was initially selected as broth medium, but did not show sufficient homogeneity of MICs. Therefore, CAMHB plus 1% chicken serum and 0.0025% NADH was selected and showed a good homogeneity of MICs after 20 h and 24 h of incubation at 35 ± 2°C. This was reflected in essential MIC agreements ranging between 96% and 100%. Testing of a larger Av. gallinarum collection (n = 43) revealed that easily readable MICs could be obtained for the type strain and all isolates. Some Av. gallinarum showed elevated MICs of enrofloxacin (n = 35), nalidixic acid (n = 35), penicillin (n = 2), tetracycline (n = 19), and/or trimethoprim-sulfamethoxazole (n = 1). By using PCR analyses, the following antimicrobial resistance genes were detected: blaTEM, dfrA14, sul2, tet(B), tet(H). The study demonstrated that the proposed medium is suitable for a harmonized broth microdilution susceptibility testing of Av. gallinarum with a recommended incubation time of 20 to 24 h.
Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pasteurellaceae , Reprodutibilidade dos TestesRESUMO
Enterococcus cecorum (EC) is one of the most relevant bacterial pathogens in modern broiler chicken production from an economic and animal welfare perspective. Although EC pathogenesis is generally well described, predisposing factors are still unknown. This study aimed to understand the effect of heat stress on the caecal microbiota, intestinal integrity, and EC pathogenesis. A total of 373 1-day-old commercial broiler chicks were randomly assigned to four groups: (1) noninoculated, thermoneutral conditions (TN); (2) noninoculated, heat stress conditions (HS); (3) EC-inoculated, thermoneutral conditions (TN + EC); and (4) EC-inoculated, heat stress conditions (HS + EC). Birds were monitored daily for clinical signs. Necropsy of 20 broilers per group was performed at 7, 14, 21, and 42 days post-hatch (dph). A trend towards enhanced and more pronounced clinical disease was observed in the EC-inoculated, heat-stressed group. EC detection rates in extraintestinal tissues via culture were higher in the HS + EC group (~19%) than in the TN + EC group (~11%). Significantly more birds were colonized by EC at 7 dph in the HS + EC group (100%) than in the TN + EC group (65%, p < 0.05). The caecal microbiota in the two EC-inoculated groups was significantly more diverse than that in the TN group (p < 0.05) at 14 dph, which may indicate an effect of EC infection. An influence of heat stress on mRNA expression of tight junction proteins in the caecum was detected at 7 dph, where all six investigated tight junction proteins were expressed at significantly lower levels in the heat stressed groups compared to the thermoneutral groups. These observations suggest that heat stress may predispose broilers to EC-associated disease and increase the severity thereof. Furthermore, heat stress may impair intestinal integrity and promote EC translocation.
Assuntos
Galinhas , Microbiota , Animais , Galinhas/microbiologia , Ceco/microbiologia , Resposta ao Choque Térmico , Proteínas de Junções ÍntimasRESUMO
AIMS: In response to a request from the Clinical and Laboratory Standards Institute (CLSI), the objective of this study was to develop a harmonized method for broth microdilution susceptibility testing of Bordetella (B.) avium, the major causative agent of infectious coryza in poultry. METHODS AND RESULTS: To find a suitable test medium, growth curves with four epidemiologically unrelated B. avium isolates were created in cation-adjusted Mueller-Hinton broth (CAMHB), CAMHB + 2.5% lysed horse blood and veterinary fastidious medium. All isolates showed good growth in CAMHB, therefore MIC values were determined using this medium and the homogeneity of the values was determined. An essential MIC agreement of 99.7% was calculated. Testing of a larger strain collection (n = 49) for their susceptibility to 24 antimicrobials confirmed the suitability of the tested method and revealed some isolates with elevated MICs of florfenicol (n = 1), streptomycin (n = 2), tetracyclines (n = 5), and trimethoprim/sulfamethoxazole (n = 6). PCR assays detected the resistance genes aadA1, dfrB1, floR, sul1, sul2 and tet(A). CONCLUSIONS: The method used enables easy reading and a good reproducibility of MIC values for B. avium. SIGNIFICANCE AND IMPACT OF STUDY: Application of the tested method allows harmonized resistance testing of B. avium and identification of isolates with elevated MIC values.
Assuntos
Anti-Infecciosos , Bordetella avium , Animais , Antibacterianos/farmacologia , Cavalos , Testes de Sensibilidade Microbiana , Reprodutibilidade dos TestesRESUMO
AIMS: Our aim was to analyse the survival of Enterococcus cecorum (EC) at various temperatures, relative air humidities and on different substrates commonly existing in broiler houses. METHODS AND RESULTS: A pathogenic EC isolate (EC14) was used to inoculate sterile litter, polyvinyl chloride (PVC) and dust samples. Incubation at 37, 25 or 15°C with either 32% relative humidity (RH) or 78% RH followed. At defined time points (0-4272 h post-inoculation), samples were examined in triplicate for the total viable count. Selected combinations were repeated for a non-pathogenic and two additional pathogenic EC strains. For EC14, the measured survival time ranged from 48 to 4272 h (178 days) depending on the substrate-humidity-temperature combination. The longevity was the highest on litter, followed by dust and then PVC. Lower temperatures facilitated its survival, lower relative air humidity favoured the survival only in combination with 25 or 15°C. All three pathogenic strains showed longer survival times (up to 432 h, 18 days) compared to the non-pathogenic EC strain (168 h, 7 days) under the same conditions. CONCLUSIONS: Enterococcus cecorum demonstrates a high persistence in the environment especially at 15°C and 32% RH. SIGNIFICANCE AND IMPACT OF THE STUDY: Hygiene management plans should consider the durability of EC and the risk of a carry-over to control consecutive EC outbreaks.
Assuntos
Galinhas , Enterococcus/fisiologia , Abrigo para Animais , Viabilidade Microbiana , Animais , Poeira , Enterococcus/patogenicidade , Umidade , Cloreto de Polivinila , TemperaturaRESUMO
Tropical shrimp, like Litopenaeus vannamei, in land-based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15 or 30. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.
Assuntos
Aquicultura , Penaeidae/microbiologia , Salinidade , Água do Mar/microbiologia , Vibrio/classificação , Animais , Carga Bacteriana , Inocuidade dos Alimentos , Genes Bacterianos , Alimentos Marinhos/microbiologia , Água do Mar/química , Vibrio/patogenicidade , Vibrioses/veterinária , Fatores de Virulência/genéticaRESUMO
Enterococcus cecorum (EC) is known to cause skeletal lesions in broiler chickens and also systemic infections in Pekin ducks. Despite the importance of the pathogen, there is still a lack of serological diagnostic tools for the detection of EC infections. Here we describe the development of an in-house indirect enzyme-linked immunosorbent assay (ELISA) for the detection of EC-specific antibodies and its application by examination of 67 sera from experimentally infected Pekin ducks, 710 field samples from four Pekin duck breeder flocks previously vaccinated with inactivated vaccines, and 80 samples from commercial Pekin ducks coming from vaccinated parent flocks. All groups that had been experimentally inoculated via the air sac route were positive in the new ELISA, with significantly (P ≤ 0.05) increased mean sample/positive (S/P) ratios of 0.71-2.70 at days 7, 14 and 21 post-infection, while orally inoculated ducks and the EC-free control group remained negative with mean S/P ratios of 0.0-0.15. Antibodies were also detected in each of four vaccinated Pekin duck breeder flocks; 67.8% of the samples were antibody positive. The highest S/P ratios were found between 16 and 26 weeks (median S/P ratios from 0.15 to 1.03), but antibodies were still detected in some serum samples in weeks 61-67 post-hatch. No antibodies were detected in the commercial Pekin ducks. Antibody development in the ducks may be influenced by the composition of the inactivated vaccine. The new ELISA provides a useful tool for investigations of response to EC infections and vaccinations.
Assuntos
Anticorpos Antivirais/sangue , Patos/microbiologia , Enterococcus/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Doenças das Aves Domésticas/diagnóstico , Animais , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Vacinas de Produtos Inativados/imunologiaRESUMO
Bordetella avium (BA) is a respiratory pathogen of particular importance for turkeys. Specific adherence and damage to the respiratory epithelia are crucial steps of the pathogenesis, but knowledge about the mechanisms and the variety of virulence in field strains is limited. We analysed 17 BA field strains regarding their in vitro virulence-associated properties in tracheal organ cultures (TOC) of turkey embryos, and their genetic diversity. The TOC adherence assay indicated that BA field strains differ considerably in their ability to adhere to the tracheal mucosa, while the TOC ciliostasis assay illustrated a high degree of diversity in ciliostatic effects. These two virulence-associated properties were associated with each other in the investigated strains. Three of the investigated strains displayed significantly (P > 0.05) lower in vitro virulence in comparison to other strains. Genetic diversity of BA strains was analysed by core genome multilocus sequence typing (cgMLST). We applied a cgMLST scheme comprising 2667 targets of the reference genome (77.3% of complete genome, BA strain 197N). The results showed a broad genetic diversity in BA field strains but did not demonstrate a correlation between sequence type and virulence-associated properties. The cgMLST analysis revealed that strains with less marked virulence-associated properties had a variety of mutations in the putative filamentous haemagglutinin gene. Likewise, amino acid sequence alignment indicated variations in the protein. The results from our study showed that both adherence and ciliostasis assay can be used for virulence characterization of BA. Variations in the filamentous haemagglutinin protein may be responsible for reduced virulence of BA field strains.
Assuntos
Bordetella avium/genética , Bordetella avium/patogenicidade , Variação Genética , Alelos , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Infecções por Bordetella/microbiologia , Infecções por Bordetella/veterinária , Bordetella avium/classificação , Cílios/fisiologia , Anotação de Sequência Molecular , Tipagem de Sequências Multilocus/veterinária , Técnicas de Cultura de Órgãos/veterinária , Filogenia , Doenças das Aves Domésticas/microbiologia , Alinhamento de Sequência/veterinária , Traqueia/embriologia , Traqueia/microbiologia , Perus/embriologia , Virulência , Sequenciamento Completo do Genoma/veterináriaRESUMO
Aeromonas spp. are ubiquitous in the aquatic environment, acting as facultative or obligate pathogens for fish. Identifying Aeromonas spp. is important for pathogenesis and prognosis in diagnostic cases but can be difficult because of their close relationship. Forty-four already characterized isolates of Aeromonas spp. were analysed by 16S rRNA gene sequencing, by gyrase B sequencing, by analysing their fatty acid profiles, by biochemical reactions and by MALDI-TOF MS. To determine their pathogenicity, cytotoxicity, adhesion to mucus and the expression of 12 virulence factors were tested. The susceptibility of the isolates towards 13 different antibiotics was determined. MALDI-TOF MS was found to be an acceptable identification method for Aeromonas spp. Although the method does not detect all species correctly, it is time-effective and entails relatively low costs and no other methods achieved better results. A high prevalence of virulence-related gene fragments was detected in almost all examined Aeromonas spp., especially in A. hydrophila and A. salmonicida, and most isolates exhibited a cytotoxic effect. Single isolates of A. hydrophila and A. salmonicida showed multiple resistance to antibiotics. These results might indicate the potentially pathogenic capacity of Aeromonas spp., suggesting a risk for aquatic animals and even humans, given their ubiquitous nature.
Assuntos
Aeromonas/classificação , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Muco/microbiologia , Aeromonas/genética , Aeromonas/patogenicidade , Animais , DNA Girase/química , Farmacorresistência Bacteriana , Ácidos Graxos/análise , Peixes , RNA Ribossômico 16S , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Fatores de VirulênciaRESUMO
Despite the importance of Bordetella avium (BA) as a respiratory pathogen of young turkeys, no infection model for the evaluation of BA-vaccine efficacy is available. The objective of this study was to evaluate the influence of route and dose of infection on the establishment of a BA-challenge model. In our first experiment, 28-day-old turkeys were either inoculated oculonasally with 105, 107 or 109 colony forming units (CFU) of BA per bird or exposed to BA by aerosol with 105-108â CFU/m3. The respiratory tract of all inoculated birds was BA-colonized, which was confirmed by choanal swabs and samples of trachea and lung, showing the highest prevalence in the aerosol-inoculated group. BA-specific humoral immune response was detected in the form of IgG in serum from five days post infection (dpi) and IgA in lacrimal fluid from seven dpi. In the second experiment, the model was tested in a vaccination trial. Twenty-one-day-old turkeys were vaccinated with a formalin-inactivated BA vaccine intramuscularly and challenged 21 days post vaccination with 107â CFU per bird oculonasally. BA-specific IgG antibodies were detected in serum and in lacrimal fluid 14 days post vaccination. As in the first experiment, secretory BA-specific antibodies of the IgA isotype were only detected in the inoculated groups from seven dpi. Despite the lack of clinical signs or pathological alterations in both experiments, vaccine efficacy was demonstrated by significant reduction in BA colonization of the trachea (P ≤ 0.05). In our study, a reliable model for BA infection has been established and has been demonstrated to be suitable for evaluation of vaccine efficacy.
Assuntos
Infecções por Bordetella/veterinária , Bordetella avium/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Animais , Infecções por Bordetella/microbiologia , Infecções por Bordetella/prevenção & controle , Modelos Animais de Doenças , Feminino , Doenças das Aves Domésticas/microbiologia , PerusRESUMO
Due to their pathogenic potential, identifying Vibrio species from recirculating aquaculture systems (RAS) for Pacific white shrimp (Litopenaeus vannamei) is of great importance to determine the risk for animal's as well as for the consumer's health. The present study compared identification results for a total of 93 Vibrio isolates, including type strains and isolates from shrimp aquaculture. Results from biochemical identifications, 16S rRNA sequencing, sequencing of the uridylate kinase encoding gene pyrH and analysis of the protein spectra assessed by MALDI-TOF MS were compared. The results achieved by these different methods were highly divergent for many of the analysed isolates and for several Vibrio spp difficulties in reliably identifying occurred. These difficulties mainly resulted from missing entries in digital databases, a low number of comparable isolates analysed so far, and high interspecific similarities of biochemical traits and nucleotide sequences between the closely related Vibrio species. Due to the presented data, it can be concluded that for identifying Vibrio spp. from samples in routine diagnostics, it is recommended to use MALDI-TOF MS analysis for a quick and reliable identification of pathogenic Vibrio sp. Nevertheless, editing the database, containing the main spectra of Vibrio is recommended to achieve reliable identification results.
Assuntos
Penaeidae/microbiologia , Vibrio/isolamento & purificação , Animais , Aquicultura , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA/veterinária , Vibrio/genética , Vibrio/fisiologiaRESUMO
BACKGROUND: Enterococcus cecorum (EC) infection currently is one of the most important bacterial diseases of modern broiler chickens but can also affect ducks or other avian species. However, little is known concerning pathogenesis of EC and most studies concentrate on examinations of EC strains from broilers only. The objective of this study was to compare pathogenic and commensal EC strains from different animal species concerning different phenotypic and genotypic traits. RESULTS: Pathogenic and commensal EC strains were not clearly separated from each other in a phylogenetic tree based on partial sequences of the 16S-rRNA-gene and also based on the fatty acid profile determined with gas chromatography. C12:0, C14:0, C15:0, C16:0, C17:0, C18:0, C18:1 w7c, C18:1 w9c and C20:4 w6,9,12,15c were detected as the major fatty acids. None of the 21 pathogenic EC strains was able to utilize mannitol, while 9 of 29 commensal strains were mannitol positive. In a dendrogram based on MALDI-TOF MS data, pathogenic strains were not clearly separated from commensal isolates. However, significant differences concerning the prevalence of several mass peaks were confirmed between the two groups. Two different antisera were produced but none of the serotypes was predominantly found in the pathogenic or commensal EC isolates. Enterococcal virulence factors gelE, esp, asa1, ccf, hyl and efaAfs were only detected in single isolates via PCR. No virulence factor was found significantly more often in the pathogenic isolates. The chicken embryo lethality of the examined EC isolates varied from 0 up to 100%. The mean embryo lethality in the pathogenic EC isolates was 39.7%, which was significantly higher than the lethality of the commensal strains, which was 18.9%. Additionally, five of the commensal isolates showed small colony variant growth, which was never reported for EC before. CONCLUSIONS: Pathogenic and commensal EC isolates from different animal species varied in chicken embryo lethality, in their ability to metabolize mannitol and probably showed divergent mass peak patterns with MALDI-TOF MS. These differences may be explained by a separate evolution of pathogenic EC isolates. Furthermore, different serotypes of EC were demonstrated for the first time.
Assuntos
Enterococcus/isolamento & purificação , Enterococcus/patogenicidade , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Sequência de Bases , Técnicas de Cultura de Células , Embrião de Galinha/microbiologia , Galinhas , Cromatografia Gasosa , DNA Bacteriano , Patos , Enterococcus/classificação , Enterococcus/genética , Ácidos Graxos/análise , Genes Bacterianos , Genótipo , Infecções por Bactérias Gram-Positivas/epidemiologia , Soros Imunes , Manitol/metabolismo , Fenótipo , Filogenia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/epidemiologia , Prevalência , RNA Ribossômico 16S/genética , Sorotipagem/veterinária , Fatores de Virulência/genéticaRESUMO
BACKGROUND: Although Enterococcus cecorum (EC) infection is one of the most important bacterial diseases in modern broiler chickens today, many aspects of epidemiology and pathogenesis are still unknown. There is a need for better detection methods for EC than classical cultivation. In the present study, we describe the validation and application of a newly developed quantitative TaqMan real-time PCR (qPCR) assay based on the 16S-rRNA-gene for the detection of EC. RESULTS: Fifty EC strains isolated from 12 different animal species were detected with the assay, while none of the other 26 examined bacterial species were tested positive during validation procedure. The detection limit of the PCR was 6.25 CFU/ml PBS. The qPCR assay was also considerably more sensitive using intestine and organ samples than the classical cultivation method. Field application of the PCR setup was tested comparing two different broiler production cycles on one farm: in cycle I broilers showed signs of enterococcal spondylitis (ES) from day 24 post hatch onwards while broilers in cycle II developed no ES. Two totally different colonization patterns were found in the two cycles with the qPCR using cloacal swabs. Animals in cycle I showed significantly (P ≤ 0.05) higher detection rates of EC at the day of placement and throughout the cycle than broilers of cycle II. Additionally, significantly higher detection rates were found in the cecum compared to duodenum, jejunum and ileum within one cycle. CONCLUSIONS: The new qPCR for EC is highly specific, more sensitive than classical cultivation and was able to show differences in colonization in a broiler cycle with later EC disease outbreak compared to a healthy cycle. These findings may be explained by infection with different strains, pathogenic EC isolates are probably more effective in colonization than commensal isolates. A high correlation was found between qPCR results from cecum and cloacal swabs in this study, indicating that cloacal swabs can be used to examine intestinal colonization of broilers with EC. The new qPCR significantly improves the diagnostic of EC infections and may help to answer open questions concerning epidemiology and pathogenesis.
Assuntos
Galinhas/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Ceco/microbiologia , DNA Bacteriano , Surtos de Doenças , Duodeno/microbiologia , Enterococcus/patogenicidade , Genes Bacterianos , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Íleo/microbiologia , Jejuno/microbiologia , Fenótipo , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S/genética , Sensibilidade e EspecificidadeRESUMO
Infectious bursal disease (IBD) is an economically important disease affecting poultry production worldwide. Previous experimental studies indicated that IBD live vaccination may induce transient immunosuppression, leading to suboptimal vaccine responses and therefore insufficient protection against other pathogens. Layer pullets are commonly not only vaccinated against IBD within their rearing period, but also against a variety of other pathogens. Therefore, it is of interest to investigate the effects of different IBD vaccination regimes on conventionally applied vaccines against other pathogens, and possible protection against widely spread very virulent IBD-virus (vvIBDV). A commercially available Herpesvirus of turkey vector vaccine (vHVT-IBD) expressing viral protein 2 of IBDV, and two IBD live vaccines were compared in commercial pullets for their effects on circulating B cell numbers, the ability of vaccinated birds to mount a humoral immune response against different antigens as well as their ability to induce protection against vvIBDV challenge. The results of this study demonstrate a clear immunosuppressive effect of the intermediate plus IBD live vaccine on the humoral branch of the immune system. On the other hand, no detectable effects of vHVT-IBD vaccination on these parameters were observed. All tested IBD vaccines protected against clinical IBD, although none induced sterile immunity in commercial layer pullets. vHVT-IBD-vaccinated birds showed significantly less lesions after vvIBDV challenge than IBD live-vaccinated or non-vaccinated birds (P < 0.05). Therefore, vHVT-IBD may be a suitable alternative to conventional IBD live vaccines, and may be applied even in the presence of maternally derived IBD antibodies without induction of detectable humoral immunosuppression.
Assuntos
Infecções por Birnaviridae/veterinária , Galinhas/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/análise , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/virologia , Bolsa de Fabricius/patologia , Bolsa de Fabricius/virologia , Feminino , Expressão Gênica , Herpesviridae/imunologia , Sistema Imunitário , Doenças das Aves Domésticas/virologia , Perus , Vacinas Atenuadas/imunologiaRESUMO
Enteric redmouth disease (ERM), caused by Yersinia ruckeri, is among the most important infectious diseases in rainbow trout Oncorhynchus mykiss aquaculture in Europe. Our aim was to analyse the persistence of Y. ruckeri strains in trout farms in northwest Germany and their dissemination between farms based on a detailed molecular and phenotypical characterisation scheme. The data on identification and characterisation of Y. ruckeri strains and examining the distribution of these strains in the field could serve as a basis for preventive disease monitoring plans. During the observation period from June 2011 until June 2012, we collected 48 Y. ruckeri isolates from 12 different rainbow trout hatcheries. In total, 44 (91.7%) of the isolates were non-motile; in particular, all isolates recovered during the sampling period in winter and early spring were non-motile. In several trout farms, characteristic farm-specific Y. ruckeri isolates from particular typing groups were isolated throughout the year, while in other farms, which had a trading relationship between each other, ERM outbreaks were caused by Y. ruckeri from the same typing group. Our data indicate that in some farms, the causative Y. ruckeri strains persisted in the respective trout farm. The presence of Y. ruckeri from the same typing group in farms with a trading relationship indicates a dissemination of the infection between the farms.
Assuntos
Doenças dos Peixes/microbiologia , Oncorhynchus mykiss , Yersiniose/veterinária , Yersinia ruckeri/classificação , Animais , Doenças dos Peixes/epidemiologia , Alemanha/epidemiologia , Yersiniose/epidemiologia , Yersiniose/microbiologiaRESUMO
BACKGROUND: Enterococcus cecorum is considered as an emerging pathogen in poultry and can cause substantial losses in broiler flocks. Femoral head necrosis and spondylitis were described as the main pathological changes in infected chickens. Nevertheless, little is known about the pathogenesis of Enterococcus cecorum infection in broilers. This report shows for the first time the whole course of disease over an entire growing period including repeated necropsies and subsequent microbiological investigations. CASE PRESENTATION: In a flock of 18200 broilers, a decrease in flock uniformity was detected from 14 days post hatch onwards with affected chickens showing lameness and an increase in flock mortality up to 7.22% at day 33 post hatch. In the first 3 weeks post hatch, pericarditis and hepatitis were found as the main pathological changes in 27.6% and 9.8% of the examined broilers respectively. Femoral head necrosis and vertebral osteomyelitis were detected in the last week of the growing period with 10.3% and 2.3% respectively. Heart, liver, spleen, yolk sac and vertebral column of 59 broilers with pathological changes were subjected to bacteriological analysis. Enterococcus cecorum was isolated from 23 birds (39%), the first broiler was already positive at day 3 post hatch in the yolk sac. Additionally, 9.75% of the broilers were rejected at the slaughterhouse primarily because of pathological changes. The investigated broiler cycle had by far the best footpad score compared to 7 cycles before and 4 cycles after the Enterococcus cecorum infection at the same farm. CONCLUSIONS: Bacteraemia and generalized infection appear to be important steps in the pathogenesis of Enterococcus cecorum infection in broilers. Furthermore, this disease causes economic losses for the farmer not only due to an increase in flock mortality, but probably also through substantially higher condemnation rates at the slaughterhouse. It was speculated that the broilers were infected via the respiratory tract as this flock had lower footpad scores likely the result of drier litter. The latter may have led to higher dust concentrations and thus airborne Enterococcus cecorum.
Assuntos
Galinhas , Enterococcus/classificação , Infecções por Bactérias Gram-Positivas/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Alemanha/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologiaRESUMO
Until now, Enterococcus cecorum (EC) has been known as a pathogen for broilers, broiler breeders, and Pekin ducks. In the present report, we describe a fatal systemic EC infection in a young racing pigeon (Columba livia forma domestica). EC was isolated from the heart, liver, spleen, and intestine of the bird in pure culture. In the pathologic examination, the pigeon showed enteritis and an ulcerative gastritis, which may have been predisposing factors for the development of the generalized EC infection. An accumulation of gram-positive cocci in spleen tissue was found in the histopathologic examination and confirms the presence of a systemic EC infection in the pigeon. Additionally, EC was isolated from cloacal swabs of other pigeons in the same loft, but no additional pigeons were submitted for necropsy. All EC isolates tested were negative by PCR for the enterococcal virulence factors cytolysin, enterococcal surface protein, aggregation substance, hyaluronidase, and gelatinase. Therefore, the reason for the enhanced virulence of the EC isolate remains unknown. Our report confirms EC as a disease-causing agent in pigeons and presents the first data concerning the analysis of EC for virulence factors.
Assuntos
Doenças das Aves/microbiologia , Columbidae , Enterococcus/classificação , Infecções por Bactérias Gram-Positivas/veterinária , Animais , Evolução Fatal , Infecções por Bactérias Gram-Positivas/patologiaRESUMO
Pathogenic Enterococcus cecorum (EC) has gained increasing importance as the cause of skeletal infections in meat-type chicken production. Since effective intervention strategies are scarce, it must be focused on preventive measures. Vaccination of meat-type breeder chicken flocks is common practice to protect the progeny against infection with EC. However, no data are available on seroconversion after infection or vaccination. The aim of the present study was the serological monitoring of chickens for EC-specific immunoglobulin Y (IgY) using a newly established EC-specific, indirect ELISA for chickens. Sera from previous infection studies were used for the establishment of the assay. Serum samples from confirmed EC-positive meat-type chicken flocks, vaccinated, and non-vaccinated meat-type chicken breeder flocks were analyzed for EC-specific IgY. Comparison of ELISA results with results from real-time PCR and/or bacteriological examination via culture revealed fair to substantial agreement. In infected chickens, more samples were classified as positive via ELISA than via real-time PCR and/or bacteriological examination via culture. Focusing on chickens experimentally infected at 1 day post-hatch (dph), the highest proportion of positive results and highest S/P ratios were found at 42 dph (p < 0.05). A similar trend was observed for the samples from naturally infected chickens (p < 0.05). Adjustment of the secondary antibody against immunoglobulin M (IgM) may open possibilities to use the assay during the early phase of the growing period, when there is still a chance to treat the infection. The examination of samples from vaccinated and non-vaccinated meat-type breeder chickens revealed no significant differences of S/P ratios independent of farm and autogenous vaccine used. In addition to that, monitoring of a non-vaccinated meat-type breeder chicken flock at 4, 10, 15, and 19 weeks post-hatch showed a continuous increase of ELISA-positive serum samples associated with an increase of S/P ratios. This may be explained by cross reactivity with antibodies to Enterococcus hirae or natural antibodies. The usage of EC-specific, recombinant proteins for coating of the plates may help to reduce unspecific background and increase the assay's specificity in future applications. In conclusion, the newly developed ELISA provides a suitable tool for serological monitoring of meat-type chickens during experimental studies with EC under standardized conditions. Remarkably, the assay is able to detect a higher proportion of EC-positive chickens than other methods, which are currently available. However, the assay is not yet suitable for the monitoring of breeder flocks due to high background.