Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(27): 7414-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27313207

RESUMO

The formation of 2D polyaniline (PANI) has attracted considerable interest due to its expected electronic and optoelectronic properties. Although PANI was discovered over 150 y ago, obtaining an atomically well-defined 2D PANI framework has been a longstanding challenge. Here, we describe the synthesis of 2D PANI via the direct pyrolysis of hexaaminobenzene trihydrochloride single crystals in solid state. The 2D PANI consists of three phenyl rings sharing six nitrogen atoms, and its structural unit has the empirical formula of C3N. The topological and electronic structures of the 2D PANI were revealed by scanning tunneling microscopy and scanning tunneling spectroscopy combined with a first-principle density functional theory calculation. The electronic properties of pristine 2D PANI films (undoped) showed ambipolar behaviors with a Dirac point of -37 V and an average conductivity of 0.72 S/cm. After doping with hydrochloric acid, the conductivity jumped to 1.41 × 10(3) S/cm, which is the highest value for doped PANI reported to date. Although the structure of 2D PANI is analogous to graphene, it contains uniformly distributed nitrogen atoms for multifunctionality; hence, we anticipate that 2D PANI has strong potential, from wet chemistry to device applications, beyond linear PANI and other 2D materials.

2.
Nano Lett ; 15(7): 4769-75, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26083832

RESUMO

Heterostructures of hexagonal boron nitride (h-BN) and graphene have attracted a great deal of attention for potential applications in 2D materials. Although several methods have been developed to produce this material through the partial substitution reaction of graphene, the reverse reaction has not been reported. Though the endothermic nature of this reaction might account for the difficulty and previous absence of such a process, we report herein a new chemical route in which the Pt substrate plays a catalytic role. We propose that this reaction proceeds through h-BN hydrogenation; subsequent graphene growth quickly replaces the initially etched region. Importantly, this conversion reaction enables the controlled formation of patterned in-plane graphene/h-BN heterostructures, without needing the commonly employed protecting mask, simply by using a patterned Pt substrate.

3.
Commun Chem ; 3(1): 31, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36703382

RESUMO

Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds.

4.
Nanoscale ; 9(47): 18597-18603, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29165485

RESUMO

A new photo-stimulated triboelectric generation occurring between a metal-oxide and polyimide during friction was demonstrated. The output currents of the triboelectric nanogenerator were significantly enhanced, under light illumination, up to approximately 5 times depending on the wavelength of the light, providing a new route for energy harvesting devices as well as self-powered selective photodetectors.

5.
Sci Rep ; 6: 22570, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936521

RESUMO

The electrons in graphene exhibit unusual behaviours, which can be described by massless Dirac quasiparticles. Understanding electron scattering in graphene has been of significant importance for its future application in electronic devices because electron scattering determines electrical properties such as resistivity and electron transport. There are two types of electron scatterings in graphene: intervalley scattering and intravalley scattering. In single-layer graphene, to date, it has been difficult to observe intravalley scattering because of the suppression of backscattering resulting from the chiral nature of the electrons in graphene. Here, we report the multiple electron scattering behaviours in single-layer graphene on a metallic substrate. By applying one- and two-dimensional Fourier transforms to maps of the local density of states, we can distinguish individual scattering processes from complex interference patterns. These techniques enable us to provide direct evidence of intravalley scattering, revealing a linear dispersion relation with a Fermi velocity of ~7.4 × 10(5) m/s.

6.
ACS Nano ; 9(1): 679-86, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25494828

RESUMO

Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

7.
Nat Commun ; 6: 6486, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744355

RESUMO

Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 10(7), with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications.

8.
Nanoscale ; 6(20): 11835-40, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25169153

RESUMO

A detailed understanding of interactions between molecules and graphene is one of the key issues for tailoring the properties of graphene-based molecular devices, because the electronic and structural properties of molecular layers on surfaces are determined by intermolecular and molecule-substrate interactions. Here, we present the atomically resolved experimental measurements of the self-assembled fullerene molecules on single-layer graphene on Cu(111). Fullerene molecules form a (4 × 4) superstructure on graphene/Cu(111), revealing only single molecular orientation. We can resolve the exact adsorption site and the configuration of fullerene by means of low-temperature scanning tunnelling microscopy (LT-STM) and density functional theory (DFT) calculations. The adsorption orientation can be explained in terms of the competition between intermolecular interactions and molecule-substrate interactions, where strong Coulomb interactions among the fullerenes determine the in-plane orientation of the fullerene. Our results provide important implications for developing carbon-based organic devices using a graphene template in the future.

9.
Adv Mater ; 26(3): 494-500, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114852

RESUMO

The interfacial dipolar polarization in inverted structure polymer solar cells, which arises spontaneously from the absorption of ethanolamine end groups, such as amine and hydroxyl groups on ripple-structure zinc oxide (ZnO-R), lowers the contact barrier for electron transport and extraction and leads to enhanced electron mobility, suppression of bimolecular recombination, reduction of the contact resistance and series resistance, and remarkable enhancement of the power conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA