Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040136

RESUMO

Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Resistência à Doença/genética , Peixe-Zebra , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistemas CRISPR-Cas , Edwardsiella/fisiologia , Citocinas/genética , Proteínas de Bactérias/genética
2.
Fish Shellfish Immunol ; 141: 109006, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598733

RESUMO

Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.

3.
Fish Shellfish Immunol ; 134: 108629, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36822381

RESUMO

The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1ß and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.


Assuntos
Antivirais , Smegmamorpha , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Citocinas/metabolismo , Receptores ErbB , Imunidade , Proliferação de Células , Smegmamorpha/metabolismo
4.
Fish Shellfish Immunol ; 131: 559-569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241004

RESUMO

Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.


Assuntos
Lipopolissacarídeos , Perciformes , Animais , Estrutura Molecular , Imunidade Inata/genética , Proteínas de Transporte , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Mamíferos/metabolismo
5.
Fish Shellfish Immunol ; 130: 206-214, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100068

RESUMO

Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Perciformes , Viroses , Animais , Proteínas Reguladoras de Apoptose , Mamíferos , Novirhabdovirus/fisiologia , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2
6.
Fish Shellfish Immunol ; 131: 672-681, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309322

RESUMO

Viperin is an important virus-induced protein in animals that negatively participates in RNA viral replication and transcription. The reactive machinery of viperin suggests that it produces a regulatory molecule ddhCTP, which may affect immune regulation. In this study, we investigated the expression pattern of viperin in larval and adult stages of zebrafish by whole-mount in situ hybridization and reverse transcription-quantitative PCR (RT-qPCR). To elucidate the function of viperin, we generated a zebrafish knockout model using the CRISPR/Cas9 method and evaluated the mutation's effects under viral hemorrhagic septicemia virus (VHSV) infections. In zebrafish larvae, viperin was expressed in the brain region, eye, and pharynx, which was confirmed by cryosectioning. In adult zebrafish, blood cells showed the highest levels of viperin expression. In 5 dpf fish challenged with VHSV, the expression of the viral NP protein was significantly enhanced in viperin-/- compared to wild-type fish. In vitro VHSV propagation analysis indicated comparatively higher levels of virus propagation in viperin-/- fish. Mortality analysis confirmed higher mortality rates, and interferon gene expression analysis showed a strong upregulation of interferon (ifn)φ1 and 3 gene in viperin-/- fish infected with VHSV. This study describes the successful generation of a viperin-knockout model and the role of viperin during VHSV infections.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistemas CRISPR-Cas , Novirhabdovirus/fisiologia , Proteínas Virais/genética , Mutação , Interferons/genética
7.
Fish Shellfish Immunol ; 111: 152-159, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556552

RESUMO

The tetraspanin superfamily proteins are transmembrane proteins identified in a diverse range of eukaryotic organisms. Tetraspanins are involved in a variety of essential biological functions, including cell differentiation, adhesion, migration, signal transduction, intracellular trafficking, and immune responses. For an infection to occur, viruses must interact with various cell surface components, including receptors and signaling molecules. Tetraspanin CD63 is involved in the organization of the cell membrane and trafficking of cellular transmembrane proteins that interact with many viruses. In this study, the cd63 gene was characterized by studying its expression and function in a zebrafish model. The functional domains and structural features of Cd63, such as the Cys-Cys-Gly (CCG) motif in the large extracellular loop and cysteine residues, are conserved in zebrafish. We confirmed that cd63 was expressed in immune system organs, such as the axial vein and pronephric duct, during the embryonic development of zebrafish. To better understand the role of cd63 in the zebrafish immune system, we established cd63-deficient zebrafish lines using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. A 19 bp insertion mutation was generated in single guide RNA (sgRNA) target sequence of exon 3 of the cd63 gene, to create a pre-mature stop codon. We then analyzed the expression of cd63-related genes cxcr4a and cxcr4b in wild type (WT) and cd63-deficient zebrafish. We believe our study provides an important model that could be used to investigate the roles of cd63 in viral infection in vivo.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade/genética , Tetraspanina 30/genética , Tetraspanina 30/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/deficiência , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Novirhabdovirus/fisiologia , Filogenia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária , Tetraspanina 30/química , Tetraspanina 30/deficiência
8.
Fish Shellfish Immunol ; 108: 14-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259930

RESUMO

Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , NF-kappa B/metabolismo , Filogenia , Proteínas Repressoras/química , Alinhamento de Sequência/veterinária , Transcriptoma
9.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R843-R854, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186196

RESUMO

Cisplatin is a well-known chemotherapy medication used to treat numerous cancers. However, treatment with cisplatin in cancer therapy has major side effects, such as nephrotoxic acute kidney injury. Adult vertebrate kidneys are commonly used as models of cisplatin-induced nephrotoxic acute kidney injury. Embryonic zebrafish kidney is more simplified and is composed simply of two nephrons and thus is an excellent model for the investigation of cisplatin nephrotoxicity. Here, we developed a novel model to induce cisplatin nephrotoxicity in adult zebrafish and demonstrated that intraperitoneal injection of cisplatin caused a decline in kidney proximal tubular function based on fluorescein-labeled dextran uptake and alkaline phosphatase staining. We also showed that cisplatin induced histological injury of the kidney tubules, quantified by tubular injury scores on the periodic acid-Schiff-stained kidney sections. As shown in a mouse model of cisplatin-induced nephrotoxicity, the activation of poly(ADP-ribose) polymerase (PARP), an enzyme implicated in cisplatin-induced cell death, was markedly increased after cisplatin injection in adult zebrafish. Furthermore, pharmacological inhibition of PARP using a specific PARP inhibitor PJ 34 hydrochloride (PJ34) or 3-aminobenzamide ameliorated kidney proximal tubular functional and histological damages in cisplatin-injected adult zebrafish kidneys. Administration of a combination of PARP inhibitors PJ34 and 3-aminobenzamide additively protected renal function and histology in zebrafish and mouse models of cisplatin nephrotoxicity. In conclusion, these data suggest that adult zebrafish are not only suitable for drug screening and genetic manipulation but also useful as a simplified but powerful model to study the pathophysiology of cisplatin nephrotoxicity and establish new therapies for treating human kidney diseases.


Assuntos
Cisplatino , Nefropatias/enzimologia , Túbulos Renais/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Benzamidas/farmacologia , Dano ao DNA , Modelos Animais de Doenças , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais , Peixe-Zebra
10.
Fish Shellfish Immunol ; 106: 410-420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805417

RESUMO

Calreticulin (CRT) is a multifunctional ubiquitous protein that is widely presented in all cells in eukaryotes except erythrocytes. CRT is well known for diverse cellular functions such as endoplasmic reticulum (ER)-specialized protein quality control during protein synthesis and folding, in-vivo Ca2+ homeostasis, antigen presentation, phagocytosis, wound-healing, proliferation, adhesion, and migration of cells. In the current study, we identified CRT from Hippocampus abdominalis (HaCRT) and analyzed expression profiles and functional properties. The cDNA sequence of HaCRT was identified with an open reading frame of 1226 bp. The molecular weight of HaCRT was estimated as 49 kDa. The in-silico study revealed conserved sequence arrangements such as two CRT signature motifs (5'-KHEQSIDCGGGYVKVF-3' and 5'-LMFGPDICG-3'), triplicate repeats (5'-IKDPEAKKPEDWD-3', 5'-IPDPDDTKPEDWD-3', 5'-IPDPDAKKPDDWD-3'), signal peptide and an ER-targeting 5'-KDEL-3' sequence of HaCRT. Close sequence similarity of HaCRT was observed with Hippocampus comes from phylogenetic analysis and pairwise sequence comparison. From quantitative polymerase chain reaction (qPCR) results, HaCRT was ubiquitously distributed in all tested tissues and expression levels of HaCRT were significantly modulated in blood, liver and gill tissues after stimulation with Streptococcus iniae, Edwardsiella tarda, polyinosinic:polycytidylic acid, and lipopolysaccharides. Bacterial- and pathogen-associated molecular patterns-binding activities were observed with recombinant HaCRT (rHaCRT). The treatment of murine macrophages with rHaCRT induced the expression of immune genes, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and interleukin-1ß (IL-1ß). Furthermore, rHaCRT exhibited wound-healing ability. Based on the results from the above study, we suggest that HaCRT play an indispensable role in the immunity of big-belly seahorses by recognition and elimination of pathogens as well as the tissue repairing process.


Assuntos
Calreticulina/genética , Calreticulina/imunologia , Proteínas de Peixes/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Calreticulina/química , Proteínas de Peixes/química , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia
11.
Fish Shellfish Immunol ; 98: 457-465, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982583

RESUMO

Syndecan-2, also known as CD362, is a transmembrane heparan sulfate proteoglycan which regulates cell growth, proliferation, cell adhesion, wound healing, and recruits immune cells. In the present study, we performed bioinformatics, spatial and temporal expression analyses of Hippocampus abdominalis syndecan-2 (HaSDC-2). Additionally, functional assays were conducted. HaSDC-2 has five major domains; an extracellular heparan sulfate attachment domain, a co-receptor binding domain, a transmembrane domain, two conserved domains (C1 domain, C2 domain), and a variable (V) domain. The ectodomain contained a signal peptide and GAG attachment sites. In-silico analysis revealed that HaSDC-2 contained a 798 bp long ORF and protein sequence of 265 amino acid residues. Further analysis of the amino acid sequence predicted a 28.9 kDa molecular weight and a 4.13 theoretical isoelectric point. The spatial expression of HaSDC-2 was ubiquitous in all tested tissues. HaSDC-2 expression in the liver was upregulated 24 h post-injection in response to all stimuli. Further, HaSDC-2 expression in blood cells was upregulated at 12 and 72 h post-injection in response to all the stimuli. HaSDC-2 + pcDNA™3.1(+) transfected cells exhibited significant survival in response to cell stressors such as H2O2 and HED. The ectodomain of recombinant HaSDC-2 treated cells showed significant cell proliferation in a concentration-dependent manner. The scratch wound healing assay showed significant Δ gap closures with increasing concentrations of HaSDC-2. Collectively, these results indicated that syndecan-2 was involved in regulating immune responses and cell stress conditions.


Assuntos
Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Smegmamorpha/metabolismo , Sindecana-2/metabolismo , Cicatrização/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Peixes , Filogenia , Domínios Proteicos , Sindecana-2/genética
12.
Fish Shellfish Immunol ; 96: 279-289, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31783148

RESUMO

The interferon-induced GTP-binding protein Mx is responsible for a specific antiviral state against a broad spectrum of viral infections that are induced by type-I interferons (IFN α/ß) in different vertebrates. In this study, the Mx gene was isolated from the constructed mullet cDNA database. Structural features of mullet Mx (MuMx) were analyzed using different in-silico tools. The pairwise comparison revealed that the MuMx sequence was related to Stegastes partitus Mx with an 83.7% sequence identity, whereas MuMx was clustered into the teleost category in the phylogentic analysis. Sequence alignment showed that the dynamin-type guanine nucleotide-binding domain (G_DYNAMIN_2), central interactive domain (CID), and GTPase effector domain (GED) were conserved among Mx counterparts. The transcriptional expression of MuMx was the highest in blood cells from unchallenged fish. The temporal mRNA profile showed that MuMx expression was significantly elevated in all tissues, including blood, spleen, head kidney, liver, and gills after the injection of polyinosinic-polycytidylic acid (poly I:C) at many time points. Moreover, MuMx expression increased slightly, in the blood, spleen, and head kidney at a few time points after the injection of lipopolysaccharide (LPS) and Lactococcus garvieae (L. garvieae). Results of the subcellular localization analysis confirmed that the MuMx protein was highly expressed in the cytoplasm. The analysis of the gene expression of the viral hemorrhagic septicemia virus (VHSV) under conditions of MuMx overexpression confirmed the significant inhibition of viral transcripts. The cell viability (MTT) assay and VHSV titer quantification with the presence of MuMx indicated a significant reduction in virus replication. Collectively, these findings suggest that Mx is a specific immune-related gene that elicits crucial antiviral functions against viral antigens in the mullet fish.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/imunologia , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Expressão Gênica , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/fisiologia , Lipopolissacarídeos/farmacologia , Proteínas de Resistência a Myxovirus/química , Novirhabdovirus/fisiologia , Filogenia , Poli I-C/farmacologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
13.
Fish Shellfish Immunol ; 93: 597-611, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31400511

RESUMO

The transcription factor, activator protein-1 (AP-1), is a dimeric protein and a downstream member of the mitogen-activated protein kinase (MAPK) signaling pathway. It regulates a wide array of functions including, cell proliferation, survival, differentiation, response to UV-irradiation, immune responses, and inflammatory conditions. AP-1 belongs to the basic leucine zipper (bZIP) protein family, which consists of members from Jun, Fos, Maf, and ATF subfamilies. In the present study, c-Jun and c-Fos homologs were identified from a transcriptome database of Liza haematocheila and designated as Lhc-Jun and Lhc-Fos. In both sequences, the signature bZIP domain was identified and also the DNA binding sites, dimerization sites, as well as the phosphorylation sites, were found to be highly conserved through evolution. Tissue distribution analysis revealed that both Lhc-Jun and Lhc-Fos transcripts were ubiquitously expressed in all examined tissues of healthy mullets. In order to determine the transcriptional modulations of Lhc-Jun and Lhc-Fos, challenge experiments were carried out using LPS, poly I:C, and L. garvieae. The qRT-PCR analysis revealed significant upregulation of Lhc-Jun and Lhc-Fos in blood, gill, liver, and spleen. This is the first study that explores the correlation between UV-irradiation and AP-1 ortholog expression in teleosts. Also, this is the first time that the functional characterization of the teleost c-Fos ortholog has been carried out. Sub-cellular localization of Lhc-Jun and Lhc-Fos was observed in the nucleus. AP-1-Luc reporter assays revealed significant higher luciferase activities in both Lhc-Jun and Lhc-Fos proteins compared to mock controls. These results strongly suggest that Lhc-Jun and Lhc-Fos might play a significant role in Liza haematocheila immunity by regulating AP-1 promoter sequences in immune and stress-related genes.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/fisiologia , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/imunologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/imunologia , Alinhamento de Sequência/veterinária , Fator de Transcrição AP-1/química
14.
Fish Shellfish Immunol ; 93: 449-462, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352119

RESUMO

Galectins are ß-galactoside-binding lectins, which are involved in pattern recognition, cell adhesion, and stimulation of the host innate immune responses against microbial pathogens. In spite of several functional studies on different galectins isolated from vertebrates and invertebrates, this is the first report to present functional studies for galectin-8 from the marine teleost tissues. In the present study, we characterized galectin-8 homolog from black rockfish (Sebastes schlegelii), in molecular and functional aspects. Rockfish galectin-8 (SsGal8) was found to consist of a 969 bp long open reading frame (ORF), encoding a protein of 322 amino acids and the predicted molecular weight was 35.82 kDa. In silico analysis of SsGal8 revealed the presence of two carbohydrate binding domains (CRDs), at both N and C-termini and a linker peptide of 40 amino acids, in between the two domains. As expected, the phylogenetic tree categorized SsGal8 as a tandem-repeat galectin, and ultimately positioned it in the sub-clade of fish galectin-8. rSsGal8 was able to strongly agglutinate fish erythrocytes and the inhibition of agglutination was successfully exhibited by lactose and d-galactose. Bacterial agglutination assay resulted in agglutination of both Gram (+) and Gram (-) bacteria, including Escherichia coli, Vibrio harveyi, Vibrio parahaemolyticus, Streptococcus parauberis, Lactococcus garvieae, Streptococcus iniae and Vibrio tapetis. The tissue distribution analysis based on qPCR assays, revealed a ubiquitous tissue expression of SsGal8 for the examined rockfish tissues, with the most pronounced expression in blood, followed by brain, intestine, head kidney and kidney. Furthermore, the mRNA transcription level of SsGal8 was significantly up-regulated in spleen, liver and head kidney, upon immune challenges with Streptococcus iniae, LPS and poly I:C, in a time dependent manner. Taken together, these findings strongly suggest the contribution of SsGal8 in regulating innate immune responses to protect the rockfish from bacterial infections.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Galectinas/genética , Galectinas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Galectinas/química , Perfilação da Expressão Gênica/veterinária , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Perciformes/genética , Perciformes/imunologia , Filogenia , Alinhamento de Sequência/veterinária
15.
Fish Shellfish Immunol ; 84: 223-232, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300741

RESUMO

Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51 kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24 h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24 h post infection in head kidney tissue and 48 h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet.


Assuntos
Carboxipeptidases/genética , Carboxipeptidases/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Carboxipeptidases/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Lactococcus/fisiologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
16.
Fish Shellfish Immunol ; 75: 263-273, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29444464

RESUMO

C1-inhibitor (C1inh) plays a crucial role in assuring homeostasis and is the central regulator of the complement activation involved in immunity and inflammation. A C1-inhibitor gene from Sebastes schlegelii was identified and designated as SsC1inh. The identified genomic DNA and cDNA sequences were 6837 bp and 2161 bp, respectively. The genomic DNA possessed 11 exons, interrupted by 10 introns. The amino acid sequence possessed two immunoglobulin-like domains and a serpin domain. Multiple sequence alignment revealed that the serpin domain of SsC1inh was highly conserved among analyzed species where the two immunoglobulin-like domains showed divergence. The distinctiveness of teleost C1inh from other homologs was indicated by the phylogenetic analysis, genomic DNA organization, and their extended N-terminal amino acid sequences. Under normal physiological conditions, SsC1inh mRNA was most expressed in the liver, followed by the gills. The involvement of SsC1inh in homeostasis was demonstrated by modulated transcription profiles in the liver and spleen upon pathogenic stress by different immune stimulants. The protease inhibitory potential of recombinant SsC1inh (rSsC1inh) and the potentiation effect of heparin on rSsC1inh was demonstrated against C1esterase and thrombin. For the first time, the anti-protease activity of the teleost C1inh against its natural substrates C1r and C1s was proved in this study. The protease assay conducted with recombinant black rockfish C1r and C1s proteins in the presence or absence of rSsC1inh showed that the activities of both proteases were significantly diminished by rSsC1inh. Taken together, results from the present study indicate that SsC1inh actively plays a significant role in maintaining homeostasis in the immune system of black rock fish.


Assuntos
Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/imunologia , Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteína Inibidora do Complemento C1/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia
17.
Dev Comp Immunol ; 158: 105208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38834141

RESUMO

Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Septicemia Hemorrágica Viral , Fator Regulador 3 de Interferon , Novirhabdovirus , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Novirhabdovirus/fisiologia , Novirhabdovirus/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Septicemia Hemorrágica Viral/imunologia , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/virologia , Animais Geneticamente Modificados , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Imunidade Inata/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Modelos Animais de Doenças , Interferons
18.
Gene ; 851: 146923, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36241083

RESUMO

Iron (Fe) is considered as an essential micronutrient due to its diverse functions in living systems. However, regulation of free iron levels is essential because free Fe ions, in excess, induce biological toxicity through different routes, including production of reactive oxygen species. Ferritin proteins play a vital role in controlling free Fe ion homeostasis by sequestering excess iron in the body. Ferritins comprise an H subunit with a ferroxidase center and an L subunit with a Fe nucleation site. However, lower vertebrates such as fish harbor an additional subunit termed ferritin M, which shows the characteristic features of both H and L. In this study, two ferritin subunits (H and M) with ferroxidase centers were identified and characterized from red-lip mullet (Liza haematocheila). The open reading frames of red-lip mullet ferritin H (LhFerH) and ferritin M-like (LhFerM) subunits comprise 534 and 531 bps, which encode for putative polypeptides of 177 and 176 amino acids, respectively. LhFerH and LhFerM were found to retain well-conserved residues, including seven ferroxidase di-iron centers, characteristic domains, and signatures of their known homologs. We cloned the open reading frames of the two ferritin subunits to overexpress the corresponding proteins in Escherichia coli and subsequently demonstrated their iron sequestration activity along with antibacterial activity against E. coli using respective purified recombinant proteins in vitro. A basal expression analysis of two LhFer genes in selected tissues using qPCR assays showed pronounced expression in blood cells with respect to both genes. A relatively high expression level of LhFerH was also detected in muscle tissues. The expression level of LhFer in the head kidney was significantly up-regulated following lipopolysaccharides (LPS) and Lactococcus garvieae injection. The resulting gene expression pattern upon immune stimulation suggests that ferritin may contribute to the defense against harmful pathogen infection. Collectively, our results indicate that both LhFerH and LhFerM potentially participate in the homeostasis of free Fe ions and in the host immune defense of red-lip mullet.


Assuntos
Ferritinas , Smegmamorpha , Animais , Ferritinas/genética , Proteínas de Peixes/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alinhamento de Sequência , Lábio , Sequência de Aminoácidos , Smegmamorpha/genética , Ferro/metabolismo , Antibacterianos/farmacologia
19.
Biomolecules ; 13(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830693

RESUMO

Stimulator of interferon genes (STING) is an adapter protein that is activated when cyclic dinucleotides (CDNs) are present. CDNs originate from the cytosolic DNA of both pathogens and hosts. STING activation promotes efficient immune responses against viral infections; however, its impact in bacterial infections is unclear. In this study, we investigated the role of Sting in bacterial infections by successfully creating a sting-deficient (sting(-/-) with a 4-bp deletion) knockout zebrafish model using CRISPR/Cas9. The transcriptional modulation of genes downstream of cGAS (cyclic GMP-AMP synthase)-Sting pathway-related genes was analyzed in seven-day-old wild-type (WT) and sting(-/-) embryos, as well as in four-day-old LPS-stimulated embryos. The expression of downstream genes was higher in sting(-/-) than in healthy WT fish. The late response was observed in sting(-/-) larvae following LPS treatment, demonstrating the importance of Sting-induced immunity during bacterial infection by activating the cGAS-STING pathway. Furthermore, adult sting(-/-) fish had a high mortality rate and significantly downregulated cGAS-STING pathway-related genes during Edwardsiella piscicida (E. piscicida) infection. In addition, we assessed NF-κB pathway genes following E. piscicida infection. Our results show fluctuating patterns of interleukin-6 (il6) and tumor necrosis factor-α (tnfα) expression, which is likely due to the influence of other NF-κB pathway-related immune genes. In summary, this study demonstrates the important role of Sting against bacterial infection.


Assuntos
Infecções Bacterianas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , NF-kappa B/metabolismo , Sistemas CRISPR-Cas , Lipopolissacarídeos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Infecções Bacterianas/genética , Imunidade Inata
20.
Front Immunol ; 14: 1327749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173722

RESUMO

Viperin is a prominent antiviral protein found in animals. The primary function of Viperin is the production of 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP), an inhibitory nucleotide involved in viral RNA synthesis. Studies in mammalian models have suggested that ddhCTP interferes with metabolic proteins. However, this hypothesis has yet to be tested in teleost. In this study, the role of Viperin in regulating metabolic alterations during viral hemorrhagic septicemia virus (VHSV) infection was tested. When infected with VHSV, viperin -/- fish showed considerably higher mortality rates. VHSV copy number and the expression of the NP gene were significantly increased in viperin -/- fish. Metabolic gene analysis revealed significant differences in soda, hif1a, fasn, and acc expression, indicating their impact on metabolism. Cholesterol analysis in zebrafish larvae during VHSV infection showed significant upregulation of cholesterol production without Viperin. In vitro analysis of ZF4 cells suggested a considerable reduction in lipid production and a significant upregulation of reactive oxygen species (ROS) generation with the overexpression of viperin. Neutrophil and macrophage recruitment were significantly modulated in viperin -/- fish compared to the wild-type (WT) fish. Thus, we have demonstrated that Viperin plays a role in interfering with metabolic alterations during VHSV infection.


Assuntos
Septicemia Hemorrágica Viral , Perciformes , Animais , Colesterol , Mamíferos , Proteínas , Peixe-Zebra , Proteína Viperina/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA