Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 592(7852): 54-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790446

RESUMO

Three-dimensional (3D) printing1-9 has revolutionized manufacturing processes for electronics10-12, optics13-15, energy16,17, robotics18, bioengineering19-21 and sensing22. Downscaling 3D printing23 will enable applications that take advantage of the properties of micro- and nanostructures24,25. However, existing techniques for 3D nanoprinting of metals require a polymer-metal mixture, metallic salts or rheological inks, limiting the choice of material and the purity of the resulting structures. Aerosol lithography has previously been used to assemble arrays of high-purity 3D metal nanostructures on a prepatterned substrate26,27, but in limited geometries26-30. Here we introduce a technique for direct 3D printing of arrays of metal nanostructures with flexible geometry and feature sizes down to hundreds of nanometres, using various materials. The printing process occurs in a dry atmosphere, without the need for polymers or inks. Instead, ions and charged aerosol particles are directed onto a dielectric mask containing an array of holes that floats over a biased silicon substrate. The ions accumulate around each hole, generating electrostatic lenses that focus the charged aerosol particles into nanoscale jets. These jets are guided by converged electric-field lines that form under the hole-containing mask, which acts similarly to the nozzle of a conventional 3D printer, enabling 3D printing of aerosol particles onto the silicon substrate. By moving the substrate during printing, we successfully print various 3D structures, including helices, overhanging nanopillars, rings and letters. In addition, to demonstrate the potential applications of our technique, we printed an array of vertical split-ring resonator structures. In combination with other 3D-printing methods, we expect our 3D-nanoprinting technique to enable substantial advances in nanofabrication.

2.
ACS Nano ; 18(20): 12771-12780, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38708928

RESUMO

Three-dimensional (3D) plasmonic metamaterials, featuring well-arranged subwavelength nanostructures, facilitate effective coupling between electrical dipoles and incident electromagnetic waves. This coupling allows for unique optical responses including localized surface plasmon resonance (LSPR) and quasi-bound states in the continuum (q-BIC). While 3D plasmonic metamaterials with LSPR and q-BIC have been independently explored for sensors, achieving simultaneous optical responses in the near-infrared region remains challenging. Here, we present 3D plasmonic metamaterials that integrate LSPR and q-BIC within a single π-shaped plasmonic structure, fabricated using a 3D aerosol nanoprinting technique. This printing technique controls the local electrostatic field to precisely position charged metallic nanoaerosols, enabling parallel printing of π-shaped plasmonic structures under ambient conditions. The printed π-shaped plasmonic structures exhibit two distinct optical modes: x-polarization-sensitive LSPR and transverse magnetic mode-sensitive q-BIC within the near-infrared region. Exploiting these dual optical responses, we demonstrate simultaneous polarization detection and incident angle analysis by integrating the π-shaped plasmonic structures into commercial Fourier-transform infrared spectroscopy, termed "numerical aperture-detective polarimetry". This approach holds promise for evaluating alignment in optical and imaging systems with light distribution analysis. Furthermore, the 3D aerosol nanoprinting technique provides an avenue for fabricating 3D plasmonic metamaterials with intricate geometries and optical properties, expanding their potential applications in nano-optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA