Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403495, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843268

RESUMO

In this work, we study the interface obtained by depositing a monolayer of a Blatter radical derivative on polycrystalline cobalt. By examining the occupied and unoccupied states at the interface, using soft X-ray techniques, combined with electronic structure calculations, we could simultaneously determine the electronic structure of both the molecular and ferromagnetic sides of the interface, thus obtaining a full understanding of the interfacial magnetic properties. We found that the molecule is strongly hybridized with the surface. Changes in the core level spectra reflect the modification of the molecule and the cobalt electronic structures inducing a decrease in the magnetic moment of the cobalt atoms bonded to the molecules which, in turn, lose their radical character. Our method allowed us to screen, beforehand, organic/ferromagnetic interfaces given their potential applications in spintronics.

2.
J Am Chem Soc ; 145(24): 13335-13346, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285418

RESUMO

Open-shell organic molecules, including S = 1/2 radicals, may provide enhanced properties for several emerging technologies; however, relatively few synthesized to date possess robust thermal stability and processability. We report the synthesis of S = 1/2 biphenylene-fused tetrazolinyl radicals 1 and 2. Both radicals possess near-perfect planar structures based on their X-ray structures and density-functional theory (DFT) computations. Radical 1 possesses outstanding thermal stability as indicated by the onset of decomposition at 269 °C, based on thermogravimetric analysis (TGA) data. Both radicals possess very low oxidation potentials <0 V (vs. SCE) and their electrochemical energy gaps, Ecell ≈ 0.9 eV, are rather low. Magnetic properties of polycrystalline 1 are characterized by superconducting quantum interference device (SQUID) magnetometry revealing a one-dimensional S = 1/2 antiferromagnetic Heisenberg chain with exchange coupling constant J'/k ≈ -22.0 K. Radical 1 in toluene glass possesses a long electron spin coherence time, Tm ≈ 7 µs in the 40-80 K temperature range, a property advantageous for potential applications as a molecular spin qubit. Radical 1 is evaporated under ultrahigh vacuum (UHV) forming assemblies of intact radicals on a silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy (XPS). Scanning electron microscope (SEM) images indicate that the radical molecules form nanoneedles on the substrate. The nanoneedles are stable for at least 64 hours under air as monitored by using X-ray photoelectron spectroscopy. Electron paramagnetic resonance (EPR) studies of the thicker assemblies, prepared by UHV evaporation, indicate radical decay according to first-order kinetics with a long half-life of 50 ± 4 days at ambient conditions.

3.
J Am Chem Soc ; 144(13): 6059-6070, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333507

RESUMO

Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, ΔEST ≈ 0.4-0.5 kcal mol-1 (2J/k ≈ 220-275 K). The diradical possesses robust thermal stability, with an onset of decomposition above 264 °C (TGA). In toluene/chloroform, glassy matrix, and fluid solution, an equilibrium between two conformations with ΔEST ≈ 0.4 kcal mol-1 and ΔEST ≈ -0.7 kcal mol-1 is observed, favoring the triplet ground state over the singlet ground-state conformation in the 110-330 K temperature range. The diradical with the triplet ground-state conformation is found exclusively in crystals and in a polystyrene matrix. The crystalline neutral diradical is a good electrical conductor with conductivity comparable to the thoroughly optimized bis(thiazolyl)-related monoradicals. This is surprising because the triplet ground state implies that the underlying π-system is cross-conjugated and thus is not compatible with either good conductance or electron delocalization. The diradical is evaporated under ultra-high vacuum to form thin films, which are stable in air for at least 18 h, as demonstrated by X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopies.


Assuntos
Elétrons , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Conformação Molecular
4.
J Am Chem Soc ; 143(14): 5508-5518, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787241

RESUMO

High-spin (S = 3/2) organic triradicals may offer enhanced properties with respect to several emerging technologies, but those synthesized to date typically exhibit small doublet quartet energy gaps and/or possess limited thermal stability and processability. We report a quartet ground state triradical 3, synthesized by a Pd(0)-catalyzed radical-radical cross-coupling reaction, which possesses two doublet-quartet energy gaps, ΔEDQ ≈ 0.2-0.3 kcal mol-1 and ΔEDQ2 ≈ 1.2-1.8 kcal mol-1. The triradical has a 70+% population of the quartet ground state at room temperature and good thermal stability with onset of decomposition at >160 °C under an inert atmosphere. Magnetic properties of 3 are characterized by SQUID magnetometry in polystyrene glass and by quantitative EPR spectroscopy. Triradical 3 is evaporated under ultrahigh vacuum to form thin films of intact triradicals on silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy. AFM and SEM images of the ∼1 nm thick films indicate that the triradical molecules form islands on the substrate. The films are stable under ultrahigh vacuum for at least 17 h but show onset of decomposition after 4 h at ambient conditions. The drop-cast films are less prone to degradation in air and have a longer lifetime.

5.
J Am Chem Soc ; 141(11): 4764-4774, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30816035

RESUMO

High spin ( S = 1) organic diradicals may offer enhanced properties with respect to several emerging technologies, but typically exhibit low singlet triplet energy gaps and possess limited thermal stability. We report triplet ground state diradical 2 with a large singlet-triplet energy gap, Δ EST ≥ 1.7 kcal mol-1, leading to nearly exclusive population of triplet ground state at room temperature, and good thermal stability with onset of decomposition at ∼160 °C under inert atmosphere. Magnetic properties of 2 and the previously prepared diradical 1 are characterized by SQUID magnetometry of polycrystalline powders, in polystyrene glass, and in other matrices. Polycrystalline diradical 2 forms a novel one-dimensional (1D) spin-1 ( S = 1) chain of organic radicals with intrachain antiferromagnetic coupling of J'/ k = -14 K, which is associated with the N···N and N···O intermolecular contacts. The intrachain antiferromagnetic coupling in 2 is by far strongest among all studied 1D S = 1 chains of organic radicals, which also makes 1D S = 1 chains of 2 most isotropic, and therefore an excellent system for studies of low-dimensional magnetism. In polystyrene glass and in frozen benzene or dibutyl phthalate solution, both 1 and 2 are monomeric. Diradical 2 is thermally robust and is evaporated under ultrahigh vacuum to form thin films of intact diradicals on silicon substrate, as demonstrated by X-ray photoelectron spectroscopy. Based on C-K NEXAFS spectra and AFM images of the ∼1.5 nm thick films, the diradical molecules form islands on the substrate with molecules stacked approximately along the crystallographic a-axis. The films are stable under ultrahigh vacuum for at least 60 h but show signs of decomposition when exposed to ambient conditions for 7 h.

6.
ACS Appl Mater Interfaces ; 15(25): 30935-30943, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319383

RESUMO

Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.

7.
Chem Sci ; 11(34): 9162-9172, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34123165

RESUMO

We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical-Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.

8.
Chem Sci ; 11(2): 516-524, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190271

RESUMO

The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA