Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 50(22): 13114-13127, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484105

RESUMO

Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.


Assuntos
Domínio AAA , Fator Tu de Elongação de Peptídeos , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , NAD/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Salmonella , Dobramento de Proteína
2.
Nucleic Acids Res ; 49(14): 8384-8395, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255843

RESUMO

Bacteria have evolved sophisticated mechanisms to deliver potent toxins into bacterial competitors or into eukaryotic cells in order to destroy rivals and gain access to a specific niche or to hijack essential metabolic or signaling pathways in the host. Delivered effectors carry various activities such as nucleases, phospholipases, peptidoglycan hydrolases, enzymes that deplete the pools of NADH or ATP, compromise the cell division machinery, or the host cell cytoskeleton. Effectors categorized in the family of polymorphic toxins have a modular structure, in which the toxin domain is fused to additional elements acting as cargo to adapt the effector to a specific secretion machinery. Here we show that Photorhabdus laumondii, an entomopathogen species, delivers a polymorphic antibacterial toxin via a type VI secretion system. This toxin inhibits protein synthesis in a NAD+-dependent manner. Using a biotinylated derivative of NAD, we demonstrate that translation is inhibited through ADP-ribosylation of the ribosomal 23S RNA. Mapping of the modification further showed that the adduct locates on helix 44 of the thiostrepton loop located in the GTPase-associated center and decreases the GTPase activity of the EF-G elongation factor.


Assuntos
Toxinas Bacterianas/farmacologia , GTP Fosfo-Hidrolases/genética , RNA Ribossômico 23S/genética , Sistemas de Secreção Tipo VI/efeitos dos fármacos , ADP-Ribosilação/efeitos dos fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , NAD/genética , Fator G para Elongação de Peptídeos/genética , Photorhabdus/química , Photorhabdus/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 23S/efeitos dos fármacos , Tioestreptona/química , Tioestreptona/farmacologia
3.
Mol Microbiol ; 115(3): 383-394, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217073

RESUMO

The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.


Assuntos
Proteínas de Bactérias/fisiologia , Chaperonas Moleculares/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Sequência Conservada , Citoplasma/efeitos dos fármacos , Interações Microbianas , Periplasma/efeitos dos fármacos , Domínios Proteicos
4.
Nat Chem Biol ; 15(3): 285-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718814

RESUMO

GCN5-related N-acetyl-transferase (GNAT)-like enzymes from toxin-antitoxin modules are strong inhibitors of protein synthesis. Here, we present the bases of the regulatory mechanisms of ataRT, a model GNAT-toxin-antitoxin module, from toxin synthesis to its action as a transcriptional de-repressor. We show the antitoxin (AtaR) traps the toxin (AtaT) in a pre-catalytic monomeric state and precludes the effective binding of ac-CoA and its target Met-transfer RNAfMet. In the repressor complex, AtaR intrinsically disordered region interacts with AtaT at two different sites, folding into different structures, that are involved in two separate functional roles, toxin neutralization and placing the DNA-binding domains of AtaR in a binding-compatible orientation. Our data suggests AtaR neutralizes AtaT as a monomer, right after its synthesis and only the toxin-antitoxin complex formed in this way is an active repressor. Once activated by dimerization, later neutralization of the toxin results in a toxin-antitoxin complex that is not able to repress transcription.


Assuntos
Acetiltransferases/metabolismo , Antitoxinas/fisiologia , Sistemas Toxina-Antitoxina/fisiologia , Acetiltransferases/fisiologia , Arilamina N-Acetiltransferase , Proteínas de Bactérias , Toxinas Bacterianas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Biossíntese de Proteínas/fisiologia , Salmonella/enzimologia , Salmonella/metabolismo , Sistemas Toxina-Antitoxina/genética
5.
Nat Chem Biol ; 13(6): 640-646, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369041

RESUMO

Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNAfMet, but no other aminoacyl-tRNAs, including the elongator Met-tRNAMet. We demonstrate that once acetylated, AcMet-tRNAfMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNAfMet as a prime target to efficiently block cell growth.


Assuntos
Aminoácido N-Acetiltransferase/metabolismo , Escherichia coli , Regulação da Expressão Gênica/genética , RNA de Transferência de Metionina/metabolismo , Acetilação , Eletroforese em Gel Bidimensional , Modelos Biológicos , Biossíntese de Proteínas
6.
Nucleic Acids Res ; 45(8): 4972-4983, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334932

RESUMO

Toxin-antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a ß-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of ß-strand ß3, thereby flipping the catalytically important Arg64 out of the active site.


Assuntos
Antitoxinas/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Complexos Multiproteicos/química , Conformação Proteica em Folha beta , Ribonucleases/química , Ribonucleases/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Domínio Catalítico , Cristalografia por Raios X , DNA Topoisomerase IV/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/genética , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/química , Ribossomos/genética , Vibrio cholerae/química , Vibrio cholerae/enzimologia
7.
RNA Biol ; 15(3): 303-307, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099338

RESUMO

Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. 1 Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.


Assuntos
Aciltransferases/metabolismo , Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/química , Acetilação , Aciltransferases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metionina/química , Modelos Moleculares , Fator de Iniciação 2 em Procariotos/metabolismo
8.
Plasmid ; 93: 30-35, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28941941

RESUMO

Type II toxin-antitoxin (TA) systems are widespread in bacterial and archeal genomes. These modules are very dynamic and participate in bacterial genome evolution through horizontal gene transfer. TA systems are commonly composed of a labile antitoxin and a stable toxin. Toxins appear to preferentially inhibit the protein synthesis process. Toxins use a variety of molecular mechanisms and target nearly every step of translation to achieve their inhibitory function. This review focuses on a recently identified TA family that includes acetyltransferase toxins. The AtaT and TacT toxins are the best-characterized to date in this family. AtaT and TacT both inhibit translation by acetylating the amino acid charged on tRNAs. However, the specificities of these 2 toxins are different as AtaT inhibits translation initiation by acetylation of the initiator tRNA whereas TacT acetylates elongator tRNAs. The molecular mechanisms of these toxins are discussed, as well as the functions and possible evolutionary origins of this diverse toxin family.


Assuntos
Acetiltransferases/genética , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Bactérias/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Genoma Bacteriano/genética
9.
Nat Commun ; 14(1): 3531, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316480

RESUMO

Acinetobacter baumannii is a nosocomial pathogen highly resistant to environmental changes and antimicrobial treatments. Regulation of cellular motility and biofilm formation is important for its virulence, although it is poorly described at the molecular level. It has been previously reported that Acinetobacter genus specifically produces a small positively charged metabolite, polyamine 1,3-diaminopropane, that has been associated with cell motility and virulence. Here we show that A. baumannii encodes novel acetyltransferase, Dpa, that acetylates 1,3-diaminopropane, directly affecting the bacterium motility. Expression of dpa increases in bacteria that form pellicle and adhere to eukaryotic cells as compared to planktonic bacterial cells, suggesting that cell motility is linked to the pool of non-modified 1,3-diaminopropane. Indeed, deletion of dpa hinders biofilm formation and increases twitching motion confirming the impact of balancing the levels of 1,3-diaminopropane on cell motility. The crystal structure of Dpa reveals topological and functional differences from other bacterial polyamine acetyltransferases, adopting a ß-swapped quaternary arrangement similar to that of eukaryotic polyamine acetyltransferases with a central size exclusion channel that sieves through the cellular polyamine pool. The structure of catalytically impaired DpaY128F in complex with the reaction product shows that binding and orientation of the polyamine substrates are conserved between different polyamine-acetyltransferases.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acetiltransferases/genética , Poliaminas , Biofilmes
10.
Microbiol Spectr ; 11(6): e0147823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800964

RESUMO

IMPORTANCE: The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo
11.
Trends Microbiol ; 30(1): 1-2, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753653

RESUMO

Bacteria deploy the type VI secretion system (T6SS) to inject effectors into bacterial rivals. Contrary to the prevailing model, a recent study (Le et al.) expands the target range of the T6SS by demonstrating that it delivers and potentializes a peptidoglycan-targeting bifunctional toxin into Gram-positive bacteria.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Parede Celular , Bactérias Gram-Positivas , Peptidoglicano , Sistemas de Secreção Tipo VI/genética
12.
Nat Rev Microbiol ; 20(6): 335-350, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34975154

RESUMO

Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.


Assuntos
Antitoxinas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bactérias/genética , Proteínas de Bactérias/genética , Genoma Bacteriano , Genômica , Sistemas Toxina-Antitoxina/genética
13.
Nat Commun ; 12(1): 6998, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853317

RESUMO

Bacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal ß-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a ß-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Photorhabdus/metabolismo , Sistemas de Secreção Tipo VI/química , Adaptação Fisiológica , Proteínas de Bactérias/química , Toxinas Bacterianas/classificação , Toxinas Bacterianas/genética , Bacteriocinas/química , Inibição de Contato , Microscopia Crioeletrônica , Espectrometria de Massas , Modelos Moleculares , Photorhabdus/genética , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
14.
mBio ; 12(6): e0294721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34844426

RESUMO

Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin's DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage. IMPORTANCE Transcriptional regulation of bacterial toxin-antitoxin (TA) systems allows compensation of toxin and antitoxin proteins to maintain a neutral state and avoid cell intoxication unless TA genes are lost. Such models have been primarily studied in plasmids, but TAs are equally present in other mobile genetic elements, such as transposons and prophages. Here, we demonstrate that the expression of a TA system located in a lambdoid cryptic prophage is transcriptionally coupled to the prophage immunity region and relies on phage transcription factors. Moreover, competition between transcription factors results in bistable expression, which generates cell-to-cell heterogeneity in the population, but without, however, leading to any detectable phenotype, even in cells expressing the TA system. We show that despite the lack of protein sequence similarity, this locus retains major lambda prophage regulation features.


Assuntos
Colífagos/genética , Escherichia coli O157/virologia , Prófagos/genética , Sistemas Toxina-Antitoxina , Proteínas Virais/genética , Sequência de Bases , Colífagos/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Óperon , Plasmídeos/genética , Plasmídeos/metabolismo , Prófagos/metabolismo , Proteínas Virais/metabolismo
15.
Front Genet ; 11: 262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362907

RESUMO

Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.

16.
Biomol NMR Assign ; 14(1): 25-30, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625047

RESUMO

The cryptic prophage CP-933P in Escherichia coli O157:H7 contains a parDE-like toxin-antitoxin module, the operator region of which is recognized by two flanking transcription regulators: PaaR2 (ParE associated Regulator), which forms part of the paaR2-paaA2-parE2 toxin-antitoxin operon and YdaS (COG4197), which is encoded in the opposite direction but shares the operator. Here we report the 1H, 15N and 13C backbone and side chain chemical shift assignments of YdaS from Escherichia coli O157:H7 in its free state. YdaS is a distinct relative to HigA antitoxins but behaves as a monomer in solution. The BMRB Accession Number is 27917.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas de Ligação a DNA/química , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Espectroscopia de Prótons por Ressonância Magnética , Isótopos de Nitrogênio/química , Estrutura Secundária de Proteína
17.
Structure ; 27(11): 1675-1685.e3, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31495532

RESUMO

The E. coli hicAB type II toxin-antitoxin locus is unusual by being controlled by two promoters and by having the toxin encoded upstream of the antitoxin. HicA toxins contain a double-stranded RNA-binding fold and cleaves both mRNA and tmRNA in vivo, while HicB antitoxins contain a partial RNase H fold and either a helix-turn-helix (HTH) or ribbon-helix-helix domain. It is not known how an HTH DNA-binding domain affects higher-order structure for the HicAB modules. Here, we present crystal structures of the isolated E. coli HicB antitoxin and full-length HicAB complex showing that HicB forms a stable DNA-binding module and interacts in a canonical way with HicA despite the presence of an HTH-type DNA-binding domain. No major structural rearrangements take place upon binding of the toxin. Both structures expose well-ordered DNA-binding motifs allowing a model for DNA binding by the antitoxin to be generated.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Sistemas Toxina-Antitoxina , Sítios de Ligação , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica
18.
Biofilm ; 1: 100001, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33447789

RESUMO

Burkholderia cenocepacia infections are difficult to treat due to resistance, biofilm formation and persistence. B. cenocepacia strain J2315 has a large multi-replicon genome (8.06 Mb) and the function of a large fraction of (conserved) hypothetical genes remains elusive. The goal of the present study is to elucidate the role of small proteins in B. cenocepacia, focusing on genes smaller than 300 base pairs of which the function is unknown. Almost 10% (572) of the B. cenocepacia J2315 genes are smaller than 300 base pairs and more than half of these are annotated as coding for hypothetical proteins. For 234 of them no similarity could be found with non-hypothetical genes in other bacteria using BLAST. Using available RNA sequencing data obtained from biofilms, a list of 27 highly expressed B. cenocepacia J2315 genes coding for small proteins was compiled. For nine of them expression in biofilms was also confirmed using LC-MS based proteomics and/or expression was confirmed using eGFP translational fusions. Overexpression of two of these genes negatively impacted growth, whereas for four others overexpression led to an increase in biofilm biomass. Overexpression did not have an influence on the MIC for tobramycin, ciprofloxacin or meropenem but for five small protein encoding genes, overexpression had an effect on the number of persister cells in biofilms. While there were no significant differences in adherence to and invasion of A549 epithelial cells between the overexpression mutants and the WT, significant differences were observed in intracellular growth/survival. Finally, the small protein BCAM0271 was identified as an antitoxin belonging to a toxin-antitoxin module. The toxin was found to encode a tRNA acetylase that inhibits translation. In conclusion, our results confirm that small proteins are present in the genome of B. cenocepacia J2315 and indicate that they are involved in various biological processes, including biofilm formation, persistence and intracellular growth.

19.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 7): 391-401, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969102

RESUMO

The ataRT operon from enteropathogenic Escherichia coli encodes a toxin-antitoxin (TA) module with a recently discovered novel toxin activity. This new type II TA module targets translation initiation for cell-growth arrest. Virtually nothing is known regarding the molecular mechanisms of neutralization, toxin catalytic action or translation autoregulation. Here, the production, biochemical analysis and crystallization of the intrinsically disordered antitoxin AtaR, the toxin AtaT, the AtaR-AtaT complex and the complex of AtaR-AtaT with a double-stranded DNA fragment of the operator region of the promoter are reported. Because they contain large regions that are intrinsically disordered, TA antitoxins are notoriously difficult to crystallize. AtaR forms a homodimer in solution and crystallizes in space group P6122, with unit-cell parameters a = b = 56.3, c = 160.8 Å. The crystals are likely to contain an AtaR monomer in the asymmetric unit and diffracted to 3.8 Šresolution. The Y144F catalytic mutant of AtaT (AtaTY144F) bound to the cofactor acetyl coenzyme A (AcCoA) and the C-terminal neutralization domain of AtaR (AtaR44-86) were also crystallized. The crystals of the AtaTY144F-AcCoA complex diffracted to 2.5 Šresolution and the crystals of AtaR44-86 diffracted to 2.2 Šresolution. Analysis of these structures should reveal the full scope of the neutralization of the toxin AtaT by AtaR. The crystals belonged to space groups P6522 and P3121, with unit-cell parameters a = b = 58.1, c = 216.7 Šand a = b = 87.6, c = 125.5 Å, respectively. The AtaR-AtaT-DNA complex contains a 22 bp DNA duplex that was optimized to obtain high-resolution data based on the sequence of two inverted repeats detected in the operator region. It crystallizes in space group C2221, with unit-cell parameters a = 75.6, b = 87.9, c = 190.5 Å. These crystals diffracted to 3.5 Šresolution.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Homeostase/genética , Óperon/genética , Sistemas Toxina-Antitoxina/genética , Sequência de Aminoácidos , Sequência de Bases , Cristalização/métodos , Cristalografia por Raios X/métodos
20.
Front Microbiol ; 9: 732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706946

RESUMO

Acinetobacter baumannii is one of the major causes of hard to treat multidrug-resistant hospital infections. A. baumannii features contributing to its spread and persistence in clinical environment are only beginning to be explored. Bacterial toxin-antitoxin (TA) systems are genetic loci shown to be involved in plasmid maintenance and proposed to function as components of stress response networks. Here we present a thorough characterization of type II system of A. baumannii, which is the most ubiquitous TA module present in A. baumannii plasmids. higBA of A. baumannii is a reverse TA (the toxin gene is the first in the operon) and shows little homology to other TA systems of RelE superfamily. It is represented by two variants, which both are functional albeit exhibit strong difference in sequence conservation. The higBA2 operon is found on ubiquitous 11 Kb pAB120 plasmid, conferring carbapenem resistance to clinical A. baumannii isolates and represents a higBA variant that can be found with multiple sequence variations. We show here that higBA2 is capable to confer maintenance of unstable plasmid in Acinetobacter species. HigB2 toxin functions as a ribonuclease and its activity is neutralized by HigA2 antitoxin through formation of an unusually large heterooligomeric complex. Based on the in vivo expression analysis of gfp reporter gene we propose that HigA2 antitoxin and HigBA2 protein complex bind the higBA2 promoter region to downregulate its transcription. We also demonstrate that higBA2 is a stress responsive locus, whose transcription changes in conditions encountered by A. baumannii in clinical environment and within the host. We show elevated expression of higBA2 during stationary phase, under iron deficiency and downregulated expression after antibiotic (rifampicin) treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA