Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 511(7507): 104-7, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24870230

RESUMO

RNA ligases have essential roles in many cellular processes in eukaryotes, archaea and bacteria, including in RNA repair and stress-induced splicing of messenger RNA. In archaea and eukaryotes, RNA ligases also have a role in transfer RNA splicing to generate functional tRNAs required for protein synthesis. We recently identified the human tRNA splicing ligase, a multimeric protein complex with RTCB (also known as HSPC117, C22orf28, FAAP and D10Wsu52e) as the essential subunit. The functions of the additional complex components ASW (also known as C2orf49), CGI-99 (also known as C14orf166), FAM98B and the DEAD-box helicase DDX1 in the context of RNA ligation have remained unclear. Taking advantage of clusters of eukaryotic orthologous groups, here we find that archease (ARCH; also known as ZBTB8OS), a protein of unknown function, is required for full activity of the human tRNA ligase complex and, in cooperation with DDX1, facilitates the formation of an RTCB-guanylate intermediate central to mammalian RNA ligation. Our findings define a role for DDX1 in the context of the human tRNA ligase complex and suggest that the widespread co-occurrence of archease and RtcB proteins implies evolutionary conservation of their functional interplay.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/metabolismo , Complexos Multienzimáticos/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/metabolismo , Splicing de RNA , RNA de Transferência/metabolismo , Domínio Catalítico , Sobrevivência Celular , Sequência Conservada , Evolução Molecular , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/isolamento & purificação , Proteínas , RNA Ligase (ATP)/isolamento & purificação , RNA de Transferência/genética , Proteínas de Ligação a RNA
2.
EMBO J ; 33(24): 2922-36, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25378478

RESUMO

The unfolded protein response (UPR) is a conserved stress-signaling pathway activated after accumulation of unfolded proteins within the endoplasmic reticulum (ER). Active UPR signaling leads to unconventional, enzymatic splicing of XBP1 mRNA enabling expression of the transcription factor XBP1s to control ER homeostasis. While IRE1 has been identified as the endoribonuclease required for cleavage of this mRNA, the corresponding ligase in mammalian cells has remained elusive. Here, we report that RTCB, the catalytic subunit of the tRNA ligase complex, and its co-factor archease mediate XBP1 mRNA splicing both in vitro and in vivo. Depletion of RTCB in plasma cells of Rtcb(fl/fl) Cd23-Cre mice prevents XBP1s expression, which normally is strongly induced during plasma cell development. RTCB-depleted plasma cells show reduced and disorganized ER structures as well as severe defects in antibody secretion. Targeting RTCB and/or archease thus represents a promising strategy for the treatment of a growing number of diseases associated with elevated expression of XBP1s.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Anticorpos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plasmócitos/fisiologia , Proteínas/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Camundongos , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
3.
J Allergy Clin Immunol ; 139(6): 1873-1884.e10, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27742396

RESUMO

BACKGROUND: Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE: Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS: In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS: Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-ß1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION: Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.


Assuntos
Células Dendríticas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Monócitos/citologia , Pele/citologia , Adulto , Diferenciação Celular/fisiologia , Células Cultivadas , Células Dendríticas/metabolismo , Embrião de Mamíferos , Sangue Fetal/citologia , Humanos , Inflamação/metabolismo , Fator 4 Semelhante a Kruppel , Monócitos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
4.
J Immunol ; 184(9): 4955-65, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20375304

RESUMO

Langerhans cells (LCs) in epithelia and interstitial dendritic cells (intDCs) in adjacent connective tissues represent two closely related myeloid-derived DC subsets that exert specialized functions in the immune system and are of clinical relevance for cell therapy. Both subsets arise from monocyte-committed intermediates in response to tissue-associated microenvironmental signals; however, molecular mechanisms underlying myeloid DC subset specification and function remain poorly defined. Using microarray profiling, we identified microRNA (miRNA) miR-146a to be constitutively expressed at higher levels in human LCs compared with intDCs. Moreover, miR-146a levels were low in monocytes and nondetectable in neutrophil granulocytes. Interestingly, constitutive high miR-146a expression in LCs is induced by the transcription factor PU.1 in response to TGF-beta1, a key microenvironmental signal for epidermal LC differentiation. We identified miR-146a as a regulator of monocyte and DC activation but not myeloid/DC subset differentiation. Ectopic miR-146a in monocytes and intDCs interfered with TLR2 downstream signaling and cytokine production, without affecting phenotypic DC maturation. Inversely, silencing of miR-146a in LCs enhanced TLR2-dependent NF-kappaB signaling. We therefore conclude that high constitutive miR-146a levels are induced by microenvironmental signals in the epidermis and might render LCs less susceptible to inappropriate activation by commensal bacterial TLR2 triggers at body surfaces.


Assuntos
Células Dendríticas/imunologia , Dessensibilização Imunológica , MicroRNAs/biossíntese , Células Mieloides/imunologia , Receptor 2 Toll-Like/fisiologia , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/metabolismo , Dessensibilização Imunológica/métodos , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/fisiologia , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/genética , Transativadores/fisiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/fisiologia , Células U937
5.
Diagnostics (Basel) ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626342

RESUMO

The COVID-19 pandemic has elicited the need to analyse and store large amounts of infectious samples for laboratory diagnostics. Therefore, there has been a demand for sample storage buffers that effectively inactivate infectious viral particles while simultaneously preserving the viral RNA. Here, we present a storage buffer containing guanidine-hydrochloride that fulfils both requirements. Its ability to preserve RNA stability was confirmed by RT-qPCR, and virus-inactivating properties were tested by tissue culture infectious dose assay. Our data revealed that RNA from samples diluted in this storage buffer was efficiently preserved. Spiking samples with RNase A resulted in RNAse concentrations up to 100 ng/mL being efficiently inhibited, whereas spiking samples with infectious SARS-CoV-2 particles demonstrated rapid virus inactivation. In addition, our buffer demonstrated good compatibility with several commercially available RNA extraction platforms. The presented guanidine-hydrochloride-based storage buffer efficiently inactivates infectious SARS-CoV-2 particles and supports viral RNA stability, leading to a reduced infection risk during sample analysis and an increased period for follow-up analysis, such as sequencing for virus variants. Because the presented buffer is uncomplicated to manufacture and compatible with a variety of commercially available test systems, its application can support and improve SARS-CoV-2 laboratory diagnostics worldwide.

6.
Blood ; 114(18): 3813-21, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19721012

RESUMO

Two major pathways of human myeloid dendritic cell (DC) subset differentiation have previously been delineated. Langerhans cells (LCs) reside in epithelia in the steady state, whereas monocytes can provide dendritic cells (DCs) on demand in response to inflammatory signals. Both DC subset pathways arise from shared CD14+ monocyte precursors, which in turn develop from myeloid committed progenitor cells. However, the underlying hematopoietic mechanisms still remain poorly defined. Here, we demonstrate that the vitamin D(3) receptor (VDR) is induced by transforming growth factor beta1 during LC lineage commitment and exerts a positive role during LC generation. In contrast, VDR is repressed during interleukin-4 (IL-4)-dependent monocyte-derived DC (moDC) differentiation. We identified GATA-1 as a repressor of VDR. GATA-1 is induced by IL-4 in moDCs. Forced inducible expression of GATA-1 mimics IL-4 in redirecting moDC differentiation and vice versa, GATA-1 knockdown arrests moDC differentiation at the monocyte stage. Moreover, ectopic GATA-1 expression stabilizes the moDC phenotype under monocyte-promoting conditions in the presence of vitamin D3 (VD3). In summary, human myeloid DC subset differentiation is inversely regulated by GATA-1 and VDR. GATA-1 mediates the repression of VDR and enables IL-4-dependent moDC differentiation. Conversely, VDR is induced downstream of transforming growth factor beta1 and is functionally involved in promoting LC differentiation.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fator de Transcrição GATA1/imunologia , Monócitos/imunologia , Células Progenitoras Mieloides/imunologia , Receptores de Calcitriol/imunologia , Proteínas Repressoras/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/farmacologia , Células K562 , Receptores de Lipopolissacarídeos , Monócitos/citologia , Monócitos/metabolismo , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/farmacologia , Células U937
7.
J Exp Med ; 209(11): 2033-47, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23071254

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is a fundamental regulator of immune cell development and function. In this study, we investigated the effects of TGF-ß1 on the differentiation of human Langerhans cells (LCs) and identified Axl as a key TGF-ß1 effector. Axl belongs to the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, whose members function as inhibitors of innate inflammatory responses in dendritic cells and are essential to the prevention of lupus-like autoimmunity. We found that Axl expression is induced by TGF-ß1 during LC differentiation and that LC precursors acquire Axl early during differentiation. We also describe prominent steady-state expression as well as inflammation-induced activation of Axl in human epidermal keratinocytes and LCs. TGF-ß1-induced Axl enhances apoptotic cell (AC) uptake and blocks proinflammatory cytokine production. The antiinflammatory role of Axl in the skin is reflected in a marked impairment of the LC network preceding spontaneous skin inflammation in mutant mice that lack all three TAM receptors. Our findings highlight the importance of constitutive Axl expression to tolerogenic barrier immunity in the epidermis and define a mechanism by which TGF-ß1 enables silent homeostatic clearing of ACs to maintain long-term self-tolerance.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Células de Langerhans/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Crescimento Transformador beta1/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Dermatite de Contato/genética , Dermatite de Contato/metabolismo , Dermatite de Contato/patologia , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Homeostase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células de Langerhans/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptor Tirosina Quinase Axl
8.
J Invest Dermatol ; 131(10): 2049-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21677668

RESUMO

Langerin (CD207) expression is a hallmark of epidermal Langerhans cells (LCs); however, CD207(+) cells comprise several functional subsets. Murine studies showed that epidermal, but not dermal, CD207(+) cells require transforming growth factor-ß 1 (TGF-ß1) for development, whereas human data are lacking. Using gene profiling, we found that the surface molecule TROP2 (TACSTD2) is strongly and rapidly induced during TGF-ß1-dependent LC commitment of human CD34(+) hematopoietic progenitor cells or monocytes. TROP2 is conserved between mouse and human, and shares substantial amino-acid identity with EpCAM, a marker for murine epidermal LCs. To our knowledge, neither TROP2 nor EpCAM expression has been analyzed in human dendritic cell (DC) subsets. We found that (i) all human epidermal LCs are TROP2(+)EpCAM(+); (ii) human dermis lacks CD207(+)EpCAM(-) or CD207(+)TROP2(-) DCs, i.e., equivalents of murine dermal CD207(+) DCs; and (iii) pulmonary CD207(+) cells are TROP2(-)EpCAM(-). Moreover, although EpCAM was broadly expressed by pulmonary and intestinal epithelial cells, as well as by bone marrow erythroid progenitor cells, these cells lacked TROP2. However, although TROP2 is expressed by human LCs as well as by human and murine keratinocytes, most murine LCs, except of a small subset, lacked TROP2. Therefore, TROP2 is a marker for human TGF-ß1-dependent epidermal LCs.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Epiderme/metabolismo , Células de Langerhans/citologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos CD34/biossíntese , Antígenos de Superfície/metabolismo , Movimento Celular , Separação Celular , Células Dendríticas/citologia , Molécula de Adesão da Célula Epitelial , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Humanos , Lectinas Tipo C/metabolismo , Receptores de Lipopolissacarídeos/biossíntese , Lectinas de Ligação a Manose/metabolismo , Camundongos , Monócitos/citologia , Células-Tronco/citologia
9.
Cell Cycle ; 10(3): 406-12, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21270520

RESUMO

Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for anti-tumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.


Assuntos
Proliferação de Células , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , Neoplasias/patologia , Animais , Células-Tronco de Carcinoma Embrionário , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Neoplasias/enzimologia
10.
Mol Cell Biol ; 30(5): 1171-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028735

RESUMO

Histone deacetylases (HDACs) are chromatin-modifying enzymes that are involved in the regulation of proliferation, differentiation and development. HDAC inhibitors induce cell cycle arrest, differentiation, or apoptosis in tumor cells and are therefore promising antitumor agents. Numerous genes were found to be deregulated upon HDAC inhibitor treatment; however, the relevant target enzymes are still unidentified. HDAC1 is required for mouse development and unrestricted proliferation of embryonic stem cells. We show here that HDAC1 reversibly regulates cellular proliferation and represses the cyclin-dependent kinase inhibitor p21 in embryonic stem cells. Disruption of the p21 gene rescues the proliferation phenotype of HDAC1(-/-) embryonic stem cells but not the embryonic lethality of HDAC1(-/-) mice. In the absence of HDAC1, mouse embryonic fibroblasts scarcely undergo spontaneous immortalization and display increased p21 expression. Chromatin immunoprecipitation assays demonstrate a direct regulation of the p21 gene by HDAC1 in mouse embryonic fibroblasts. Transformation with simian virus 40 large T antigen or ablation of p21 restores normal immortalization of primary HDAC1(-/-) fibroblasts. Our data demonstrate that repression of the p21 gene is crucial for HDAC1-mediated control of proliferation and immortalization. HDAC1 might therefore be one of the relevant targets for HDAC inhibitors as anticancer drugs.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Histona Desacetilase 1/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/genética , Transformação Celular Viral , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Histona Desacetilase 1/deficiência , Histona Desacetilase 1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Fenótipo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA