Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(12): e111272, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37143403

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Epigênese Genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Perfilação da Expressão Gênica , Metilação de DNA
2.
Biochem J ; 480(24): 2023-2035, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38014506

RESUMO

Egg activation at fertilization in mouse eggs is caused by a series of cytosolic Ca2+ oscillations that are associated with an increase in ATP concentrations driven by increased mitochondrial activity. We have investigated the role of Ca2+ oscillations in these changes in ATP at fertilization by measuring the dynamics of ATP and Ca2+ in mouse eggs. An initial ATP increase started with the first Ca2+ transient at fertilization and then a secondary increase in ATP occurred ∼1 h later and this preceded a small and temporary increase in the frequency of Ca2+ oscillations. Other stimuli that caused Ca2+ oscillations such as PLCz1 or thimerosal, caused smaller or slower changes in ATP that failed to show the distinct secondary rise. Sperm-induced Ca2+ oscillations in the egg also triggered changes in the fluorescence of NADH which followed the pattern of Ca2+ spikes in a similar pattern to oscillations triggered by PLCz1 or thimerosal. When eggs were loaded with low concentrations of the Ca2+ chelator BAPTA, sperm triggered one small Ca2+ increase, but there were still extra phases of ATP increase that were similar to control fertilized eggs. Singular Ca2+ increases caused by thapsigargin were much less effective in elevating ATP levels. Together these data suggest that the secondary ATP increase at fertilization in mouse eggs is not caused by increases in cytosolic Ca2+. The fertilizing sperm may stimulate ATP production in eggs via both Ca2+ and by another mechanism that is independent of PLCz1 or Ca2+ oscillations.


Assuntos
Cálcio , Timerosal , Camundongos , Masculino , Animais , Timerosal/farmacologia , Sêmen , Espermatozoides/fisiologia , Trifosfato de Adenosina , Fertilização/fisiologia
3.
PLoS Biol ; 17(1): e3000107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629605

RESUMO

Current molecular biology laboratories rely heavily on the purification and manipulation of nucleic acids. Yet, commonly used centrifuge- and column-based protocols require specialised equipment, often use toxic reagents, and are not economically scalable or practical to use in a high-throughput manner. Although it has been known for some time that magnetic beads can provide an elegant answer to these issues, the development of open-source protocols based on beads has been limited. In this article, we provide step-by-step instructions for an easy synthesis of functionalised magnetic beads, and detailed protocols for their use in the high-throughput purification of plasmids, genomic DNA, RNA and total nucleic acid (TNA) from a range of bacterial, animal, plant, environmental and synthetic sources. We also provide a bead-based protocol for bisulfite conversion and size selection of DNA and RNA fragments. Comparison to other methods highlights the capability, versatility, and extreme cost-effectiveness of using magnetic beads. These open-source protocols and the associated webpage (https://bomb.bio) can serve as a platform for further protocol customisation and community engagement.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ácidos Nucleicos/isolamento & purificação , Animais , DNA/isolamento & purificação , Humanos , Campos Magnéticos , Microesferas , RNA/isolamento & purificação
4.
Nucleic Acids Res ; 45(4): 1703-1713, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27899645

RESUMO

DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/genética , DNA/metabolismo , Endonucleases/metabolismo , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Endonucleases/genética , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(43): 12202-12207, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27729528

RESUMO

Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe2+ recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Animais , Ácido Ascórbico/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Medicina Regenerativa , Tretinoína/farmacologia , Vitamina A/farmacologia
6.
Chembiochem ; 19(14): 1523-1530, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29888515

RESUMO

The encapsulation of folded proteins in stabilizing matrices is one of the challenges of soft-matter materials science. Capturing such fragile bio-macromolecules from aqueous solution, and embedding them in a lattice that stabilizes them against denaturation and decomposition is difficult. Here, we report that tetrahedral oligonucleotide hybrids as branching elements, and connecting DNA duplexes with sticky ends can assemble into materials. The material-forming property was used to capture DNA-binding proteins selectively from aqueous protein mixtures. The three-dimensional networks also encapsulate guest molecules in a size-selective manner, accommodating proteins up to a molecular weight of approximately 159 kDa for the connecting duplex lengths tested. Exploratory experiments with green fluorescent protein showed that, when embedded in the DNA-based matrix, the protein is more stable toward denaturation than in the free form, and retains its luminescent properties for at least 90 days in dry form. The noncrystalline biohybrid matrices presented herein may be used for capturing other proteins or for producing functional materials.

7.
Proc Natl Acad Sci U S A ; 112(45): 13970-5, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26483466

RESUMO

Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.


Assuntos
Formigas/genética , Regulação da Expressão Gênica/genética , Hierarquia Social , Modelos Genéticos , Fenótipo , Comportamento Social , Vespas/genética , Animais , Formigas/fisiologia , Sequência de Bases , Encéfalo/metabolismo , Metilação de DNA/genética , Genoma de Inseto/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Dados de Sequência Molecular , Transcriptoma/genética , Vespas/fisiologia
8.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L334-L347, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011616

RESUMO

Airway mucus hypersecretion contributes to the morbidity and mortality in patients with chronic inflammatory lung diseases. Reducing mucus production is crucial for improving patients' quality of life. The transcription factor SAM-pointed domain-containing Ets-like factor (SPDEF) plays a critical role in the regulation of mucus production and, therefore, represents a potential therapeutic target. This study aims to reduce lung epithelial mucus production by targeted silencing SPDEF using the novel strategy, epigenetic editing. Zinc fingers and CRISPR/dCas platforms were engineered to target repressors (KRAB, DNA methyltransferases, histone methyltransferases) to the SPDEF promoter. All constructs were able to effectively suppress both SPDEF mRNA and protein expression, which was accompanied by inhibition of downstream mucus-related genes [anterior gradient 2 (AGR2), mucin 5AC (MUC5AC)]. For the histone methyltransferase G9A, and not its mutant or other effectors, the obtained silencing was mitotically stable. These results indicate efficient SPDEF silencing and downregulation of mucus-related gene expression by epigenetic editing, in human lung epithelial cells. This opens avenues for epigenetic editing as a novel therapeutic strategy to induce long-lasting mucus inhibition.


Assuntos
Epigênese Genética , Células Epiteliais/metabolismo , Edição de Genes , Pulmão/citologia , Muco/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Sequência de Bases , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Regulação para Baixo/genética , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Biológicos , Mucina-5AC/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Dedos de Zinco
9.
RNA Biol ; 14(9): 1241-1251, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27819523

RESUMO

The amino acid sequence of Dnmt2 is very similar to the catalytic domains of bacterial and eukaryotic DNA-(cytosine 5)-methyltransferases, but it efficiently catalyzes tRNA methylation, while its DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. By using composite nucleic acid molecules as substrates, we surprisingly found that DNA fragments, when presented as covalent DNA-RNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Furthermore, by stepwise development of tRNAAsp, we showed that this natural Dnmt2 substrate could be engineered to employ RNAs that act like guide RNAs in vitro. The 5'-half of tRNAAsp was able to efficiently guide methylation toward a single stranded tRNA fragment as would result from tRNA cleavage by tRNA specific nucleases. In a more artificial setting, a composite system of guide RNAs could ultimately be engineered to enable the enzyme to perform cytidine methylation on single stranded DNA in vitro.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Animais , Citosina/metabolismo , Humanos , Metilação , Camundongos , Conformação de Ácido Nucleico , RNA de Transferência/genética , Relação Estrutura-Atividade
10.
RNA Biol ; 14(9): 1108-1123, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27232191

RESUMO

A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell biology and epigenetics.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Ácidos Nucleicos/metabolismo , Animais , Sítios de Ligação , Catálise , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/classificação , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Metilação , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Filogenia , Ligação Proteica , Retroelementos , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Nucleic Acids Res ; 42(10): 6487-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711368

RESUMO

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Geobacter/enzimologia , RNA de Transferência de Ácido Glutâmico/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Humanos , Metilação , Camundongos , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/química , Especificidade por Substrato
12.
Nucleic Acids Res ; 40(4): 1708-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21926159

RESUMO

The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.


Assuntos
Caulobacter crescentus/enzimologia , Metilação de DNA , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Plasmídeos/metabolismo
13.
Nucleic Acids Res ; 40(22): 11648-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23074192

RESUMO

The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNA(Asp) and, to a lesser extent, of tRNA(Glu), despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , RNA de Transferência/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , tRNA Metiltransferases/metabolismo , Citosina/metabolismo , Metilação , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Transdução de Sinais
14.
Sci Adv ; 10(18): eadn5861, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701218

RESUMO

Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.


Assuntos
Proteínas de Drosophila , Complexo Repressor Polycomb 1 , Animais , Sistema Nervoso Central/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Larva/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas , Ligação Proteica
15.
iScience ; 26(11): 108193, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920666

RESUMO

DNMT3 in Hymenoptera has a unique duplication of the essential PWWP domain. Using GST-tagged PWWP fusion proteins and histone arrays we show that these domains have gained new properties and represent the first case of PWWP domains binding to H3K27 chromatin modifications, including H3K27me3, a key modification that is important during development. Phylogenetic analyses of 107 genomes indicate that the duplicated PWWP domains separated into two sister clades, and their distinct binding capacities are supported by 3D modeling. Other features of this unique DNA methylation system include variable copies, losses, and duplications of DNMT1 and DNMT3, and combinatorial generations of DNMT3 isoforms including variants missing the catalytic domain. Some of these losses and duplications of are found only in parasitic wasps. We discuss our findings in the context of the crosstalk between DNA methylation and histone methylation, and the expanded potential of epigenomic modifications in Hymenoptera to drive evolutionary novelties.

16.
Front Endocrinol (Lausanne) ; 14: 1134478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008919

RESUMO

Introduction: Beta cell dysfunction by loss of beta cell identity, dedifferentiation, and the presence of polyhormonal cells are main characteristics of diabetes. The straightforward strategy for curing diabetes implies reestablishment of pancreatic beta cell function by beta cell replacement therapy. Aristaless-related homeobox (Arx) gene encodes protein which plays an important role in the development of pancreatic alpha cells and is a main target for changing alpha cell identity. Results: In this study we used CRISPR/dCas9-based epigenetic tools for targeted hypermethylation of Arx gene promoter and its subsequent suppression in mouse pancreatic αTC1-6 cell line. Bisulfite sequencing and methylation profiling revealed that the dCas9-Dnmt3a3L-KRAB single chain fusion constructs (EpiCRISPR) was the most efficient. Epigenetic silencing of Arx expression was accompanied by an increase in transcription of the insulin gene (Ins2) mRNA on 5th and 7th post-transfection day, quantified by both RT-qPCR and RNA-seq. Insulin production and secretion was determined by immunocytochemistry and ELISA assay, respectively. Eventually, we were able to induce switch of approximately 1% of transiently transfected cells which were able to produce 35% more insulin than Mock transfected alpha cells. Conclusion: In conclusion, we successfully triggered a direct, transient switch of pancreatic alpha to insulin-producing cells opening a future research on promising therapeutic avenue for diabetes management.


Assuntos
Diabetes Mellitus , Células Secretoras de Glucagon , Camundongos , Animais , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Metilação de DNA , Diabetes Mellitus/metabolismo
17.
Sci Rep ; 13(1): 20832, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012215

RESUMO

The COVID-19 pandemic demonstrated the need for rapid molecular diagnostics. Vaccination programs can provide protection and facilitate the opening of society, but newly emergent and existing viral variants capable of evading the immune system endanger their efficacy. Effective surveillance for Variants of Concern (VOC) is therefore important. Rapid and specific molecular diagnostics can provide speed and coverage advantages compared to genomic sequencing alone, benefitting the public health response and facilitating VOC containment. Here we expand the recently developed SARS-CoV-2 CRISPR-Cas detection technology (SHERLOCK) to provide rapid and sensitive discrimination of SARS-CoV-2 VOCs that can be used at point of care, implemented in the pipelines of small or large testing facilities, and even determine the proportion of VOCs in pooled population-level wastewater samples. This technology complements sequencing efforts to allow facile and rapid identification of individuals infected with VOCs to help break infection chains. We show the optimisation of our VarLOCK assays (Variant-specific SHERLOCK) for multiple specific mutations in the S gene of SARS-CoV-2 and validation with samples from the Cardiff University Testing Service. We also show the applicability of VarLOCK to national wastewater surveillance of SARS-CoV-2 variants and the rapid adaptability of the technique for new and emerging VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Águas Residuárias , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , Testes Imediatos
18.
Biochemistry ; 51(22): 4438-44, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22591353

RESUMO

The DNMT2 enzyme methylates tRNA-Asp at position C38. Because there is no tRNA-Dnmt2 cocrystal structure available, we have mapped the tRNA binding site of DNMT2 by systematically mutating surface-exposed lysine and arginine residues to alanine and studying the tRNA methylation activity and binding of the corresponding variants. After mutating 20 lysine and arginine residues, we identified eight of them that caused large (>4-fold) decreases in catalytic activity. These residues cluster within and next to a surface cleft in the protein, which is large enough to accommodate the tRNA anticodon loop and stem. This cleft is located next to the binding pocket for the cofactor S-adenosyl-L-methionine, and the catalytic residues of DNMT2 are positioned at its walls or bottom. Many of the variants with strongly reduced catalytic activity showed only a weak loss of tRNA binding or even bound better to tRNA than wild-type DNMT2, which suggests that the enzyme induces some conformational changes in the tRNA in the transition state of the methyl group transfer reaction. Manual placement of tRNA into the structure suggests that DNMT2 mainly interacts with the anticodon stem and loop.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Clonagem Molecular , DNA (Citosina-5-)-Metiltransferases/genética , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , RNA de Transferência/química , Alinhamento de Sequência
19.
Chembiochem ; 13(9): 1304-11, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22639453

RESUMO

Caulobacter crescentus CcrM is a DNA-(adenine N6)-methyltransferase that methylates adenine in the sequence GANTC with high specificity. To investigate its mechanism of DNA recognition, we used the crystal structure of a related methyltransferase (M1.MboII, which modifies GAAGA) as a starting point, and docked into it a DNA substrate to identify the protein regions that approach the DNA. After alignment of CcrM and M1.MboII, we identified four candidate regions in CcrM to contain residues involved in DNA recognition. We mutated 20 amino acid residues within these regions, purified the CcrM variants, and determined their DNA-binding and catalytic activity on a cognate GANTC substrate and on nine near-cognate substrates, each of which contained a single base-pair substitution in the recognition sequence. Altogether, we identified four residues in two of the regions, mutations of which resulted in a strong (>100-fold) reduction of methylation activity. Our data show that DNA recognition by CcrM is a cooperative process, because disruption of critical contacts led to loss of catalytic activity but not to a relaxation in specificity. In addition, we identified a change in the readout of the fifth base pair in the GANTC sequence with two other CcrM variants that showed smaller reductions in overall activity. Based on this and the sequence alignment of CcrM with other DNA methyltransferases of same or related recognition sequence, we propose roles for these two regions in DNA recognition by CcrM.


Assuntos
Caulobacter crescentus/enzimologia , DNA/metabolismo , Modelos Moleculares , Mutação , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Sequência de Aminoácidos , Biocatálise , DNA/genética , Metilação de DNA , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Conformação Proteica , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Especificidade por Substrato
20.
PLoS Genet ; 5(3): e1000438, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19325872

RESUMO

Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype-epigenotype interactions by showing novel examples of allele-specific methylation.


Assuntos
Alelos , Pareamento de Bases , Cromossomos Humanos Par 21/genética , Metilação de DNA , Epigênese Genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Ilhas de CpG , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA