Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Remote Sens Environ ; 217: 72-85, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30220740

RESUMO

The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Terra and Aqua satellites have provided nearly two decades of global fire data. Here, we describe refinements made to the 500-m global burned area mapping algorithm that were implemented in late 2016 as part of the MODIS Collection 6 (C6) land-product reprocessing. The updated algorithm improves upon the heritage Collection 5.1 (C5.1) MCD64A1 and MCD45A1 algorithms by offering significantly better detection of small burns, a modest reduction in burn-date temporal uncertainty, and a large reduction in the extent of unmapped areas. Comparison of the C6 and C5.1 MCD64A1 products for fifteen years (2002-2016) on a regional basis shows that the C6 product detects considerably more burned area globally (26%) and in almost every region considered. The sole exception was in Boreal North America, where the mean annual area burned was 6% lower for C6, primarily as a result of a large increase in the number of small lakes mapped (and subsequently masked) at high latitudes in the upstream C6 input data. With respect to temporal reporting accuracy, 44% of the C6 MCD64A1 burned grid cells were de-tected on the same day as an active fire, and 68% within 2 days, which represents a substantial reduction in temporal uncertainty compared to the C5.1 MCD64A1 and MCD45A1 products. In addition, an areal accuracy assessment of the C6 burned area product undertaken using high resolution burned area reference maps derived from 108 Landsat image pairs is reported.

2.
Remote Sens Environ ; 178: 31-41, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30158718

RESUMO

The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, on-board NASA's Terra and Aqua satellites, have provided more than a decade of global fire data. Here we describe improvements made to the fire detection algorithm and swath-level product that were implemented as part of the Collection 6 land-product reprocessing, which commenced in May 2015. The updated algorithm is intended to address limitations observed with the previous Collection 5 fire product, notably the occurrence of false alarms caused by small forest clearings, and the omission of large fires obscured by thick smoke. Processing was also expanded to oceans and other large water bodies to facilitate monitoring of offshore gas flaring. Additionally, fire radiative power (FRP) is now retrieved using a radiance-based approach, generally decreasing FRP for all but the comparatively small fraction of high intensity fire pixels. We performed a Stage-3 validation of the Collection 5 and Collection 6 Terra MODIS fire products using reference fire maps derived from more than 2500 high-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Our results indicated targeted improvements in the performance of the Collection 6 active fire detection algorithm compared to Collection 5, with reduced omission errors over large fires, and reduced false alarm rates in tropical ecosystems. Overall, the MOD14 Collection 6 daytime global commission error was 1.2%, compared to 2.4% in Collection 5. Regionally, the probability of detection for Collection 6 exhibited a ~3% absolute increase in Boreal North America and Boreal Asia compared to Collection 5, a ~1% absolute increase in Equatorial Asia and Central Asia, a ~1% absolute decrease in South America above the Equator, and little or no change in the remaining regions considered. Not unexpectedly, the observed variability in the probability of detection was strongly driven by regional differences in fire size. Overall, there was a net improvement in Collection 6 algorithm performance globally.

3.
Int J Digit Earth ; 12(4): 460-484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30319711

RESUMO

We characterize the agreement and disagreement of four publically available burned products (Fire CCI, Copernicus Burnt Area, MODIS MCD45A1, and MODIS MCD64A1) at a finer spatial and temporal scale than previous assessments using a grid of three-dimensional cells defined both in space and in time. Our analysis, conducted using seven years of data (2005-2011), shows that estimates of burned area vary greatly between products in terms of total area burned, the location of burning, and the timing of the burning. We use regional and monthly units for analysis to provide insight into the variation between products that can be lost when considering products yearly and/or globally. Comparison with independent, contemporaneous MODIS active fire observations provides one indication of which products most reasonably capture the burning regime. Our results have implications for the use of global burned area products in fire ecology, management and emissions applications.

4.
Int J Remote Sens ; 39(4): 971-992, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892137

RESUMO

The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for applications with an uncertainty of less than 0.02 to 0.05, depending on the scale of spatial aggregation, which is typically the uncertainty of the individual dataset.

5.
Int J Digit Earth ; Volume 10(Iss 12): 1253-1269, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32021650

RESUMO

This study investigates misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, and between multi-temporal Sentinel-2A images at 10 m resolution using a phase correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear Random Forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07±0.02 pixels at 30 m resolution, and 0.09±0.05 and 0.15±0.06 pixels at 10 m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded RMSE of 0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same Sentinel-2A orbits) and 0.20±0.09 (adjacent orbits) pixels at 10 m resolution.

6.
PLoS One ; 10(4): e0124346, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909632

RESUMO

Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.


Assuntos
Incêndios , Geografia , Mianmar , Análise Espacial , Árvores
7.
J Geophys Res Atmos ; 118(17): 9753-9765, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821661

RESUMO

[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.

8.
Sci Total Environ ; 407(21): 5701-12, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19647857

RESUMO

Burning crop residue before and/or after harvest is a common farming practice however; there is no baseline estimate for cropland burned area in the contiguous U.S. (CONUS). We present the results of a study, using five years of remotely sensed satellite data to map the location and areal extent of crop residue burning in the CONUS. Our burned area approach combines 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Burn Ratio (dNBR) data, with 1 km MODIS active fire counts calibrated using coincident high resolution satellite data to generate area estimates. Our results show that cropland burning is an extensive and recurring annual event in several states in the CONUS. On average, 1,239,000 ha of croplands burn annually, which is equivalent to 43% of the annual average area of wildland fires in the U.S., as reported by the United States Forest Service for the same period. Several states experience high levels (>30,000 ha yr(-1)) of crop residue burning, including Arkansas, California, Colorado, Florida, Idaho, Kansas, Louisiana, North Dakota, Oklahoma, Oregon, South Dakota, Texas, and Washington. Validation with high resolution burn scar imagery and GPS data collected during targeted field campaigns showed a moderate to high-level accuracy for our burned area estimates, ranging from 78 to 90%. Our approach provides a more consistent methodology for quantifying cropland burned area at regional scales than the previously available U.S. national and state-level statistics on crop residue burning.


Assuntos
Produtos Agrícolas , Poluição Ambiental/análise , Incêndios , Sistemas de Informação Geográfica , Comunicações Via Satélite , Estados Unidos
9.
Environ Monit Assess ; 114(1-3): 107-21, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16502279

RESUMO

This paper examines the vulnerability of the Congo Basin's forests through a GIS platform, taking into consideration the variables of population growth, road density, logging concession, and forest fragmentation. The assessment indicates that the forests will continue to shrink towards the interior over the next 50 years. Current contiguous forests will fragment into three large blocks, including one on the west side of the Congo River and two in the Democratic Republic of Congo, while a large number of small forest patches will retain in the periphery of the large blocks. The study shows that integrated GIS assessment of the driving forces of tropical deforestation can shed light on the future forest distribution and provide a tool to address the broader implications of social and economic development for tropical deforestation.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Árvores/crescimento & desenvolvimento , Clima Tropical , Urbanização , África Central , Rios
10.
Environ Monit Assess ; 101(1-3): 69-83, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15736876

RESUMO

The NASA Landsat Pathfinder Humid Tropical Deforestation Project was to map deforestation activities in the humid tropics using datasets from both the Landsat TM (Thematic Mapper) and MSS (Multispectral Scanner System). In Central Africa, its effort had been constrained by the availability of cloud-free satellite coverage, especially for the 1970s Landsat MSS imagery. Here, we reported the deforestation rate and its spatial variability in the region using 18 pairs of co-registered Landsat TM imagery from the 1980s to 1990s. Of the total classified area of 416,000 km2, there were approximately 217,000 km2 of dense forest and 24,000 km2 of degraded forest in the 1980s. A total of 1012 km2 of forest, including 542 km2 of dense forest and 470 km2 of degraded forest, were cleared annually with an annual deforestation rate of 0.42%, varying among scenes ranging from 0.03 to 2.72%. Additionally, an average of 0.12% (ranging from 0.01 to 0.77% among scenes) or 257 km2 of dense forest was degraded annually. Regression analyses indicated that extensive deforestation occurred in areas with larger forest cover, including dense and degraded forests. Image interpretation also confirmed the hypothesized relationship between deforestation and forest accessibility. The annual clearance of the dense forest was significantly related to the rural population density, and there was a positive relationship between the dense forest degraded during the 1980s-1990s and the degraded forest area in the 1980s.


Assuntos
Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Árvores , África , Monitoramento Ambiental , Agricultura Florestal , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA