Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 142(10): 2979-2995, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31412103

RESUMO

Multiple sclerosis is a chronic inflammatory, demyelinating, and neurodegenerative disease affecting the brain, spinal cord and optic nerves. Neuronal damage is triggered by various harmful factors that engage diverse signalling cascades in neurons; thus, therapeutic approaches to protect neurons will need to focus on agents that can target multiple biological processes. We have therefore focused our attention on microRNAs: small non-coding RNAs that primarily function as post-transcriptional regulators that target messenger RNAs and repress their translation into proteins. A single microRNA can target many functionally related messenger RNAs making microRNAs powerful epigenetic regulators. Dysregulation of microRNAs has been described in many neurodegenerative diseases including multiple sclerosis. Here, we report that two microRNAs, miR-223-3p and miR-27a-3p, are upregulated in neurons in the experimental autoimmune encephalomyelitis mouse model of CNS inflammation and in grey matter-containing multiple sclerosis lesions. Prior work has shown peripheral blood mononuclear cell conditioned media causes sublethal degeneration of neurons in culture. We find overexpression of miR-27a-3p or miR-223-3p protects dissociated cortical neurons from condition media mediated degeneration. Introduction of miR-223-3p in vivo in mouse retinal ganglion cells protects their axons from degeneration in experimental autoimmune encephalomyelitis. In silico analysis revealed that messenger RNAs involved in glutamate receptor signalling are enriched as miR-27a-3p and miR-223-3p targets. We observe that antagonism of NMDA and AMPA type glutamate receptors protects neurons from condition media dependent degeneration. Our results suggest that miR-223-3p and miR-27a-3p are upregulated in response to inflammation to mediate a compensatory neuroprotective gene expression program that desensitizes neurons to glutamate by targeting messenger RNAs involved in glutamate receptor signalling.


Assuntos
Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , MicroRNAs/genética , Neurônios/patologia , Animais , Axônios/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Medula Espinal/patologia
2.
J Neuroinflammation ; 16(1): 223, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729981

RESUMO

BACKGROUND: Multiple sclerosis is an autoimmune disease with a distinct female bias, as well as a high prevalence of neuropathic pain in both sexes. The dorsal root ganglia (DRG) contain the primary sensory neurons that give rise to pain, and damage to these neurons may lead to neuropathic pain. Here, we investigate the sex differences of the DRG transcriptome in a mouse model of MS. METHODS: Next-generation sequencing was used to establish RNA and microRNA profiles from the DRG of mice with MOG35-55-induced EAE, a model of CNS inflammation that mimics aspects of MS. Differential expression and multiple meta-analytic approaches were used to compare expression profiles in immunized female and male mice. Differential expression of relevant genes and microRNAs were confirmed by qPCR. RESULTS: Three thousand five hundred twenty genes and 29 microRNAs were differentially expressed in the DRG of female mice with MOG35-55-EAE, while only 189 genes and 3 microRNAs were differentially expressed in males with MOG35-55-EAE. Genes related to the immune system were uniquely regulated in immunized female mice. Direct comparison of sex within disease indicates significant differences in interferon and phagosomal pathways between the sexes. miR-21a-5p is the primary dysregulated microRNA in both sexes, with females having additional dysregulated microRNAs, including miR-122-5p. CONCLUSIONS: This study provides evidence that females are uniquely affected by MOG35-55-EAE and that this difference may result from additional signaling not present in the male. The altered transcriptome of females correlates with other studies finding hyperactivity of pain-sensing neurons and suggests underlying sex-specific pathways for neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental/genética , Gânglios Espinais/metabolismo , MicroRNAs/biossíntese , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
3.
Mult Scler ; 21(12): 1485-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286700

RESUMO

BACKGROUND: Anti-oxidant compounds that are found in over-the-counter (OTC) supplements and foods are gaining interest as treatments for multiple sclerosis (MS). They are widely used by patients, sometimes without a clear evidence base. OBJECTIVE: We conducted a systematic review of animal and clinical research to determine the evidence for the benefits of OTC anti-oxidants in MS. METHODS: Using predefined criteria, we searched key databases. Two authors scrutinized all studies against inclusion/exclusion criteria, assessed study risk-of-bias and extracted results. RESULTS: Of the 3507 titles, 145 met criteria and included compounds, α(alpha)-lipoic acid (ALA), anti-oxidant vitamins, Ginkgo biloba, quercetin, resveratrol and epigallocatechin-3-gallate (ECGC). The strongest evidence to support OTC anti-oxidants was for compounds EGCG and ALA in animal models; both consistently showed anti-inflammatory/anti-oxidant effects and reduced neurological impairment. Only vitamin E, Ginkgo biloba and ALA were examined for efficacy in pilot clinical trials with either conflicting evidence or evidence of no benefit. CONCLUSION: OTC anti-oxidants EGCG and ALA show the most consistent benefit, however only in preclinical studies. There is no evidence that they alter MS relapses or progression. Future work should focus on testing more of these therapies for clinical efficacy before recommending them to MS patients.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Ginkgo biloba , Esclerose Múltipla/tratamento farmacológico , Medicamentos sem Prescrição/farmacologia , Quercetina/farmacologia , Estilbenos/farmacologia , Ácido Tióctico/farmacologia , Animais , Catequina/farmacologia , Humanos , Resveratrol
4.
BMC Biotechnol ; 13: 86, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119185

RESUMO

BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Bainha de Mielina/química , Polilisina/química , Animais , Células COS , Adesão Celular , Linhagem Celular , Chlorocebus aethiops , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
5.
Prog Neurobiol ; 182: 101664, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356849

RESUMO

While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models. We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Animais , Modelos Animais de Doenças , Humanos , MicroRNAs/metabolismo , Doenças Neurodegenerativas/diagnóstico
6.
Sci Rep ; 8(1): 13437, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194392

RESUMO

Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease but the molecular mechanisms underlying neurodegenerative aspects of the disease are poorly understood. microRNAs (miRNAs) are powerful regulators of gene expression that regulate numerous mRNAs simultaneously and can thus regulate programs of gene expression. Here, we describe miRNA expression in neurons captured from mice subjected to experimental autoimmune encephalomyelitis (EAE), a model of central nervous system (CNS) inflammation. Lumbar motor neurons and retinal neurons were laser captured from EAE mice and miRNA expression was assessed by next-generation sequencing and validated by qPCR. We describe 14 miRNAs that are differentially regulated in both neuronal subtypes and determine putative mRNA targets though in silico analysis. Several upregulated neuronal miRNAs are predicted to target pathways that could mediate repair and regeneration during EAE. This work identifies miRNAs that are affected by inflammation and suggests novel candidates that may be targeted to improve neuroprotection in the context of pathological inflammation.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Neurônios Retinianos/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , MicroRNAs/genética , Neurônios Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA