RESUMO
The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the ßγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism.
Assuntos
Antígenos de Helmintos/metabolismo , Basófilos/metabolismo , Cristalinas/imunologia , Proteínas do Ovo/metabolismo , Proteínas de Helminto/metabolismo , Imunoglobulina E/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Sítios de Ligação/genética , Western Blotting , Cromatografia em Gel , Cristalinas/genética , Cristalinas/metabolismo , Cristalografia por Raios X , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Imunoglobulina E/química , Interleucina-4/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Homologia de Sequência de AminoácidosRESUMO
Galectin-1 is a member of a protein family historically characterized by its ability to bind carbohydrates containing a terminal galactosyl residue. Galectin-1 is found in a variety of mammalian tissues as a homodimer of 14.5-kDa subunits. A number of developmental and regulatory processes have been attributed to the ability of galectin-1 to bind a variety of oligosaccharides containing the Gal-beta-(1,4)-GlcNAc (LacNAc(II)) sequence. To probe the origin of this permissive binding, solvated molecular dynamics (MD) simulations of several representative galectin-1-ligand complexes have been performed. Simulations of structurally defined complexes have validated the computational approach and expanded upon data obtained from X-ray crystallography and surface plasmon resonance measurements. The MD results indicate that a set of anchoring interactions between the galectin-1 carbohydrate recognition domain (CRD) and the LacNAc core are maintained for a diverse set of ligands and that substituents at the nonreducing terminus of the oligosaccharide extend into the remainder of a characteristic surface groove. The anionic nature of ligands exhibiting relatively high affinities for galectin-1 implicates electrostatic interactions in ligand selectivity, which is confirmed by a generalized Born analysis of the complexes. The results suggest that the search for a single endogenous ligand or function for this lectin may be inappropriate and instead support a more general role for galectin-1, in which the lectin is able to crosslink heterogeneous oligosaccharides displayed on a variety of cell surfaces. Such binding promiscuity provides an explanation for the variety of adhesion phenomena mediated by galectin-1.