Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37697074

RESUMO

The hypothalamic neuropeptide oxytocin (OT) is well known for its prosocial, anxiolytic, and ameliorating effects on various psychiatric conditions, including alcohol use disorder (AUD). In this chapter, we will first introduce the basic neurophysiology of the OT system and its interaction with other neuromodulatory and neurotransmitter systems in the brain. Next, we provide an overview over the current state of research examining the effects of acute and chronic alcohol exposure on the OT system as well as the effects of OT system manipulation on alcohol-related behaviors in rodents and humans. In rodent models of AUD, OT has been repeatedly shown to reduce ethanol consumption, particularly in models of acute alcohol exposure. In humans however, the results of OT administration on alcohol-related behaviors are promising but not yet conclusive. Therefore, we further discuss several physiological and methodological limitations to the effective application of OT in the clinic and how they may be mitigated by the application of synthetic OT receptor (OTR) agonists. Finally, we discuss the potential efficacy of cutting-edge pharmacology and gene therapies designed to specifically enhance endogenous OT release and thereby rescue deficient expression of OT in the brains of patients with severe forms of AUD and other incurable mental disorders.

2.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
3.
STAR Protoc ; 3(1): 101032, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34977678

RESUMO

Here, we present a step-by-step protocol to target, record, and manipulate the activity of oxytocin neurons in awake rats. The protocol includes a procedure to record the activity of oxytocin neurons from awake and socially interacting rats using opto-electrodes for simultaneous electrophysiological recording and virally based cell-type-specific opto-tagging with Channelrhodopsin 2. Furthermore, we illustrate a procedure for optically guided implantation of optic fiber and imaging of oxytocin neuron population activity expressing calcium indicator GCaMP6s with the fiber photometry technique. For complete details on the use and execution of this protocol, please refer to Tang et al., 2020.


Assuntos
Neurônios , Ocitocina , Animais , Eletrodos , Tecnologia de Fibra Óptica/métodos , Neurônios/fisiologia , Fotometria/métodos , Ratos
4.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36458331

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Assuntos
Astrócitos , Hipotálamo , Neuropeptídeos , Ocitocina , Síndrome de Prader-Willi , Animais , Feminino , Masculino , Camundongos , Astrócitos/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Ocitocina/metabolismo , Síndrome de Prader-Willi/metabolismo , Receptores de Ocitocina/metabolismo
5.
Curr Biol ; 32(21): 4593-4606.e8, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36113471

RESUMO

Social touch is an essential component of communication. Little is known about the underlying pathways and mechanisms. Here, we discovered a novel neuronal pathway from the posterior intralaminar thalamic nucleus (PIL) to the medial preoptic area (MPOA) involved in the control of social grooming. We found that the neurons in the PIL and MPOA were naturally activated by physical contact between female rats and also by the chemogenetic stimulation of PIL neurons. The activity-dependent tagging of PIL neurons was performed in rats experiencing physical social contact. The chemogenetic activation of these neurons increased social grooming between familiar rats, as did the selective activation of the PIL-MPOA pathway. Neurons projecting from the PIL to the MPOA express the neuropeptide parathyroid hormone 2 (PTH2), and the central infusion of its receptor antagonist diminished social grooming. Finally, we showed a similarity in the anatomical organization of the PIL and the distribution of the PTH2 receptor in the MPOA between the rat and human brain. We propose that the discovered neuronal pathway facilitates physical contact with conspecifics.


Assuntos
Neuropeptídeos , Roedores , Humanos , Ratos , Feminino , Animais , Asseio Animal , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA