Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364168

RESUMO

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

3.
Phys Rev Lett ; 118(4): 046601, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186808

RESUMO

Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons. We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry and resulting mobility.

4.
Phys Rev Lett ; 119(6): 066803, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949609

RESUMO

The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hν>2eV. A model of electrons interacting coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at eV and 2eV as well as the scaling of the intensity at low and intermediate conductances.

5.
Phys Rev Lett ; 116(19): 196801, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232031

RESUMO

We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

6.
Phys Rev Lett ; 114(12): 126803, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860766

RESUMO

We develop a theoretical framework for the description of light emission from plasmonic contacts based on the nonequilibrium Green function formalism. Our theory establishes a fundamental link between the finite-frequency quantum noise and ac conductance of the contact and the light emission. Calculating the quantum noise to higher orders in the electron-plasmon interaction, we identify a plasmon-induced electron-electron interaction as the source of experimentally observed above-threshold light emission from biased STM contacts. Our findings provide important insight into the effect of interactions on the light emission from atomic-scale contacts.

7.
J Chem Phys ; 139(11): 114111, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24070283

RESUMO

Recent observations of considerable spin polarization in photoemission from metal surfaces through monolayers of chiral molecules were followed by several efforts to rationalize the results as the effect of spin-orbit interaction that accompanies electronic motion on helical, or more generally strongly curved, potential surfaces. In this paper we (a) argue, using simple models, that motion in curved force-fields with the typical energies used and the characteristic geometry of DNA cannot account for such observations; (b) introduce the concept of induced spin filtering, whereupon selectivity in the transmission of the electron orbital angular momentum can induce spin selectivity in the transmission process provided there is strong spin-orbit coupling in the substrate; and (c) show that the spin polarization in the tunneling current as well as the photoemission current from gold covered by helical adsorbates can be of the observed order of magnitude. Our results can account for most of the published observations that involved gold and silver substrates; however, recent results obtained with an aluminum substrate can be rationalized within the present model only if strong spin-orbit coupling is caused by the built-in electric field at the molecule-metal interface.


Assuntos
DNA/química , Elétrons , Metais/química , Adsorção , Movimento (Física) , Conformação de Ácido Nucleico , Estereoisomerismo
8.
J Phys Condens Matter ; 29(27): 273002, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28323250

RESUMO

The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

9.
Nano Lett ; 8(11): 3809-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954146

RESUMO

We address polarization-induced renormalization of molecular levels in solid-state based single-molecule transistors and focus on an organic conjugate molecule where a surprisingly large reduction of the addition energy has been observed. We have developed a scheme that combines a self-consistent solution of a quantum chemical calculation with a realistic description of the screening environment. Our results indeed show a large reduction, and we explain this to be a consequence of both (a) a reduction of the electrostatic molecular charging energy and (b) polarization induced level shifts of the HOMO and LUMO levels. Finally, we calculate the charge stability diagram and explain at a qualitative level general features observed experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA