RESUMO
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Sinorhizobium , Microbiologia do Solo , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Sinorhizobium/genética , Sinorhizobium/virologia , Sinorhizobium/fisiologia , Fases de Leitura AbertaRESUMO
Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.
Assuntos
Emulsões/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , DNA/genética , Primers do DNA/genética , Biblioteca Gênica , Genoma/genética , Humanos , Modelos Teóricos , Técnicas de Amplificação de Ácido Nucleico/métodos , Moldes GenéticosRESUMO
Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.
Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Humanos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hidroxilação , Células HEK293 , Mutação , Mamíferos/metabolismoRESUMO
Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.
Assuntos
Diester Fosfórico Hidrolases , Topotecan , Sistemas CRISPR-Cas , DNA , Reparo do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Esterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Topotecan/farmacologia , Transcriptoma , Poli(ADP-Ribose) Polimerase-1/metabolismoRESUMO
In eukaryotic ribosomes, the conserved protein uS19, formerly known as S15, extends with its C-terminal tail to the decoding site. The cross-linking of uS19 to the A site codon has been detected using synthetic mRNAs bearing 4-thiouridine (s4U) residues. Here, we showed that the A-site tRNA prevents this cross-linking and that the P site codon does not contact uS19. Next, we focused on determining uS19-mRNA interactions in vivo by applying the photoactivatable-ribonucleoside enhancing cross-linking and immunoprecipitation method to a stable HEK293 cell line producing FLAG-tagged uS19 and grown in a medium containing s4U. We found that when translation was stopped by cycloheximide, uS19 was efficiently cross-linked to mRNA regions with a high frequency of Glu, Lys and, more rarely, Arg codons. The results indicate that the complexes, in which the A site codon is not involved in the formation of the mRNA-tRNA duplex, are present among the cycloheximide-arrested 80S complexes, which implies pausing of elongating ribosomes at the above mRNA regions. Thus, our findings demonstrate that the human ribosomal protein uS19 interacts with mRNAs during translation elongation and highlight the regions of mRNAs where ribosome pausing occurs, bringing new structural and functional insights into eukaryotic translation in vivo.
Assuntos
RNA Mensageiro/química , Proteínas Ribossômicas/química , Ribossomos/química , Códon , Eucariotos/genética , Células HEK293 , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA de Transferência/química , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Tiouridina/químicaRESUMO
First triplets of mRNA coding region affect the yield of translation. We have applied the flowseq method to analyze >30 000 variants of the codons 2-11 of the fluorescent protein reporter to identify factors affecting the protein synthesis. While the negative influence of mRNA secondary structure on translation has been confirmed, a positive role of rare codons at the beginning of a coding sequence for gene expression has not been observed. The identity of triplets proximal to the start codon contributes more to the protein yield then more distant ones. Additional in-frame start codons enhance translation, while Shine-Dalgarno-like motifs downstream the initiation codon are inhibitory. The metabolic cost of amino acids affects the yield of protein in the poor medium. The most efficient translation was observed for variants with features resembling those of native Escherichia coli genes.
Assuntos
Códon de Iniciação/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/genética , Códon de Iniciação/ultraestrutura , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestruturaRESUMO
The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues.
Assuntos
Metiltransferases , RNA Mensageiro/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/químicaRESUMO
A number of mutations in the RPS20 gene encoding the ribosomal protein uS10 have been found to be associated with a predisposition to hereditary non-polyposis colorectal carcinoma (CRC). We transfected HEK293T cells with constructs carrying the uS10 minigene with mutations identical to those mentioned above and examined the effects of the produced proteins on the cellular transcriptome. We showed that uS10 with mutations p.V50SfsX23 or p.L61EfsX11 cannot be incorporated into 40S ribosomal subunits, while the protein with the missense mutation p.V54L functionally replaces the respective endogenous protein in the 40S subunit assembly and the translation process. The comparison of RNA-seq data obtained from cells producing aberrant forms of uS10 with data for those producing the wild-type protein revealed overlapping sets of upregulated and downregulated differently expressed genes (DEGs) related to several pathways. Among the limited number of upregulated DEGs, there were genes directly associated with the progression of CRC, e.g., PPM1D and PIGN. Our findings indicate that the accumulation of the mutant forms of uS10 triggers a cascade of cellular events, similar to that which is triggered when the cell responds to a large number of erroneous proteins, suggesting that this may increase the risk of cancer.
Assuntos
Neoplasias Colorretais , Proteínas Ribossômicas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Suscetibilidade a Doenças , Células HEK293 , Humanos , Mutação , Proteínas Ribossômicas/genética , TranscriptomaRESUMO
Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.
Assuntos
Escherichia coli , Ribossomos , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões 5' não Traduzidas/genética , Ribossomos/genética , Ribossomos/metabolismo , Biblioteca Gênica , Biossíntese de ProteínasRESUMO
Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.
Assuntos
Bacteriófagos , Pectobacterium , Podoviridae , Bacteriófagos/genética , Genoma Viral , Pectobacterium/genética , Filogenia , Podoviridae/genética , PolissacarídeosRESUMO
The protein eL38 is one of the smallest proteins of the mammalian ribosome, which is a component of its large (60S) subunit. The haploinsufficiency of eL38 in mice leads to the Tail-short mutant phenotype characterized by defects in the development of the axial skeleton caused by the poor translation of mRNA subsets of Hox genes. Using the ribosome profiling assay applied to HEK293 cells knocked down of eL38, we examined the effects of the lack of eL38 in 60S subunits on gene expression at the level of translation. A four-fold decrease in the cell content of eL38 was shown to result in significant changes in the translational efficiencies of 150 genes. Among the genes, whose expression at the level of translation was enhanced, there were mainly those associated with basic metabolic processes; namely, translation, protein folding, chromosome organization, splicing, and others. The set of genes with reduced translation efficiencies contained those that are mostly involved in the processes related to the regulation of transcription, including the activation of Hox genes. Thus, we demonstrated that eL38 insufficiency significantly affects the expression of certain genes at the translational level. Our findings facilitate understanding the possible causes of some anomalies in eL38-deficient animals.
Assuntos
Regulação da Expressão Gênica/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Expressão Gênica/genética , Células HEK293 , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Transcriptoma/genéticaRESUMO
Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.
Assuntos
Regulação da Expressão Gênica/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Biossíntese de Proteínas/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Transcrição Gênica/fisiologia , Transcriptoma/genéticaRESUMO
Phytopathogenic bacteria belonging to the Pectobacterium and Dickeya genera (soft-rot Pectobacteriaceae) are in the focus of agriculture-related microbiology because of their diversity, their substantial negative impact on the production of potatoes and vegetables, and the prospects of bacteriophage applications for disease control. Because of numerous amendments in the taxonomy of P. carotovorum, there are still a few studied sequenced strains among this species. The present work reports on the isolation and characterization of the phage infectious to the type strain of P. carotovorum. The phage Arno 160 is a lytic Podovirus representing a potential new genus of the subfamily Autographivirinae. It recognizes O-polysaccahride of the host strain and depolymerizes it in the process of infection using a rhamnosidase hydrolytic mechanism. Despite the narrow host range of this phage, it is suitable for phage control application.
Assuntos
Bacteriófagos/fisiologia , Pectobacterium carotovorum/metabolismo , Pectobacterium carotovorum/virologia , Sequência de Aminoácidos , Bacteriófagos/ultraestrutura , Genoma Viral , Genômica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Filogenia , Polimerização , Polissacarídeos Bacterianos/química , Ligação Proteica , Proteínas Virais/químicaRESUMO
Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.
Assuntos
Cromossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lagartos/genética , Análise de Sequência de DNA/métodos , Animais , Divisão Celular , Proteínas Cromossômicas não Histona/genética , Mapeamento Cromossômico , Coloração Cromossômica , Evolução Molecular , Proteínas dos Microfilamentos/genética , FilogeniaRESUMO
BACKGROUND: Gut microbiota has been increasingly acknowledged to shape significantly human health, contributing to various autoimmune diseases, both intestinal and non-intestinal, including multiple sclerosis (MS). Gut microbiota studies in patients with relapsing remitting MS strongly suggested its possible role in immunoregulation; however, the profile and potential of gut microbiota involvement in patients with primary progressive MS (PPMS) patients has received much less attention due to the rarity of this disease form. We compared the composition and structure of faecal bacterial assemblage using Illumina MiSeq sequencing of V3-V4 hypervariable region of 16S rRNA genes amplicons in patients with primary progressive MS and in the healthy controls. RESULTS: Over all samples 12 bacterial phyla were identified, containing 21 classes, 25 orders, 54 families, 174 genera and 1256 operational taxonomic units (OTUs). The Firmicutes phylum was found to be ultimately dominating both in OTUs richness (68% of the total bacterial OTU number) and in abundance (71% of the total number of sequence reads), followed by Bacteroidetes (12 and 16%, resp.) and Actinobacteria (7 and 6%, resp.). Summarily in all samples the number of dominant OTUs, i.e. OTUs with ≥1% relative abundance, was 13, representing much less taxonomic richness (three phyla, three classes, four orders, six families and twelve genera) as compared to the total list of identified OTUs and accounting for 30% of the sequence reads number in the healthy cohort and for 23% in the PPMS cohort. Human faecal bacterial diversity profiles were found to differ between PPMS and healthy cohorts at different taxonomic levels in minor or rare taxa. Marked PPMS-associated increase was found in the relative abundance of two dominant OTUs (Gemmiger sp. and an unclassified Ruminococcaceae). The MS-related differences were also found at the level of minor and rare OTUs (101 OTUs). These changes in OTUs' abundance translated into increased bacterial assemblage diversity in patients. CONCLUSION: The findings are important for constructing a more detailed global picture of the primary progressive MS-associated gut microbiota, contributing to better understanding of the disease pathogenesis.
Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Variação Genética , Esclerose Múltipla Crônica Progressiva/microbiologia , Adulto , Idoso , Estudos de Casos e Controles , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Adulto JovemRESUMO
Ribosomal proteins are involved in many cellular processes through interactions with various RNAs. Here, applying the photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation approach to HEK293 cells overproducing ribosomal protein (rp) eS1, we determined the products of RNU5A-1 and RNU11 genes encoding U5 and U11 snRNAs as the RNA partners of ribosome-unbound rp eS1. U11 pre-snRNA-associated rp eS1 was revealed in the cytoplasm and nucleus where rp eS1-bound U11/U12 di-snRNP was also found. Utilizing recombinant rp eS1 and 4-thiouridine-containing U11 snRNA transcript, we identified an N-terminal peptide contacting the U-rich sequence in the Sm site-containing RNA region. We also showed that the rp eS1 binding site on U11 snRNA is located in the cleft between stem-loops I and III and that its structure mimics the respective site on the 18S rRNA. It was found that cell depletion of rp eS1 leads to a decrease in the splicing efficiency of minor introns and to an increase in the level of U11 pre-snRNA with the unprocessed 3' terminus. Our findings demonstrate the engagement of human rp eS1 in events related to the U11 snRNA processing and to minor-class splicing. Contacts of rp eS1 with U5 snRNA in the minor pre-catalytic spliceosome are discussed.
Assuntos
Biossíntese de Proteínas , Splicing de RNA , RNA Ribossômico 18S/genética , RNA Nuclear Pequeno/química , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico 18S/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Tiouridina/metabolismoRESUMO
Isolated human ribosomal protein uS3 has extra-ribosomal functions including those related to base excision DNA repair, e.g. AP lyase activity that nicks double-stranded (ds) DNA 3Î to the abasic (AP) site. However, the ability of uS3 residing within ribosome to recognize and cleave damaged DNA has never been addressed. Here, we compare interactions of single-stranded (ss) DNA and dsDNA bearing AP site with human ribosome-bound uS3 and with the isolated protein, whose interactions with ssDNA were not yet studied. The AP lyase activity of free uS3 was much higher with ssDNA than with dsDNA, whereas ribosome-bound uS3 was completely deprived of this activity. Nevertheless, an exposed peptide of ribosome-bound uS3 located far away from the putative catalytic center previously suggested for isolated uS3 cross-linked to full-length uncleaved ssDNA, but not to dsDNA. In contrast, free uS3 cross-linked mainly to the 5Î-part of the damaged DNA strand after its cleavage at the AP site. ChIP-seq analysis showed preferential uS3 binding to nucleolus-associated chromatin domains. We conclude that free and ribosome-bound uS3 proteins interact with AP sites differently, exhibiting their non-translational functions in DNA repair in and around the nucleolus and in regulation of DNA damage response in looped DNA structures, respectively.
Assuntos
Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Centrômero , Cromossomos Humanos/metabolismo , Dano ao DNA , DNA de Cadeia Simples/química , Humanos , Domínios Proteicos , Proteínas Ribossômicas/químicaRESUMO
Exosomes, membranous vesicles secreted by various cells, are involved in intercellular communication and carry vast repertoires of RNAs and proteins. Processes mediating RNA sorting into exosomes are currently poorly understood. Using bioinformatics approaches, three structural motifs ACCAGCCU, CAGUGAGC and UAAUCCCA have been discovered as enriched in exosomal mRNAs and long noncoding RNAs. Here, utilizing short RNA hairpins, each containing one of the motifs, in a pull-down assay of cytosolic extract of human embryonic kidney 293 (HEK293) cells, we prove that multifunctional RNA-binding protein YB-1 specifically interacts with all three motifs, whereas methyltransferase NSUN2 recognizes only the motif CAGUGAGC. RNA hairpins other than those mentioned above pull out neither YB-1 nor NSUN2. Both these proteins are found in exosomes secreted by HEK293 cells. YB-1 for all that is detected as a form having a slightly higher electrophoretic mobility than that of YB-1 associated with the above RNA hairpins, assuming changes in posttranslational modifications of the protein during its transfer from cytoplasm into exosomes. Next generation sequencing of total exosomal RNA (eRNA) reveals a large representative set of RNA species, including mRNAs containing the above-mentioned motifs. The degree of enrichment in exosomes with this kind of mRNAs strongly depends on the locations of eRNA-specific motifs within the mRNA sequences. Altogether, our findings point to YB-1 and NSUN2 as possible mediators of the process of transfer of specific mRNAs into exosomes, allowing us to speculate on an involvement of these proteins in the mRNA sorting via the recognition of the above motifs.
Assuntos
Citosol/metabolismo , Exossomos/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Sequência de Aminoácidos , Citometria de Fluxo , Células HEK293 , Humanos , Metiltransferases/química , Microscopia Imunoeletrônica , RNA Mensageiro/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína 1 de Ligação a Y-Box/químicaRESUMO
Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Répteis/genética , Análise de Sequência de DNA/métodos , Cromossomos Sexuais/genética , Animais , Mapeamento Cromossômico , DNA/isolamento & purificação , Evolução Molecular , MicrodissecçãoRESUMO
Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.