Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 56(3): 635-652.e6, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36796364

RESUMO

Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Genes Codificadores dos Receptores de Linfócitos T
2.
Immunity ; 54(2): 355-366.e4, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33484642

RESUMO

Definition of the specific germline immunoglobulin (Ig) alleles present in an individual is a critical first step to delineate the ontogeny and evolution of antigen-specific antibody responses. Rhesus and cynomolgus macaques are important animal models for pre-clinical studies, with four main sub-groups being used: Indian- and Chinese-origin rhesus macaques and Mauritian and Indonesian cynomolgus macaques. We applied the (Ig) gene inference tool IgDiscover and performed extensive Sanger sequencing-based genomic validation to define germline VDJ alleles in these 4 sub-groups, comprising 45 macaques in total. There was allelic overlap between Chinese- and Indian-origin rhesus macaques and also between the two macaque species, which is consistent with substantial admixture. The island-restricted Mauritian cynomolgus population displayed the lowest number of alleles of the sub-groups, yet maintained high individual allelic diversity. These comprehensive databases of germline IGH alleles for rhesus and cynomolgus macaques provide a resource toward the study of B cell responses in these important pre-clinical models.


Assuntos
Genótipo , Mutação em Linhagem Germinativa/genética , Cadeias Pesadas de Imunoglobulinas/genética , Alelos , Animais , Bases de Dados Genéticas , Modelos Animais de Doenças , Epitopos , Imunidade Humoral , Macaca fascicularis , Macaca mulatta , Filogenia , Polimorfismo Genético , Especificidade da Espécie , Recombinação V(D)J
3.
BMC Bioinformatics ; 20(1): 523, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660857

RESUMO

BACKGROUND: Orthology inference is normally based on full-length protein sequences. However, most proteins contain independently folding and recurring regions, domains. The domain architecture of a protein is vital for its function, and recombination events mean individual domains can have different evolutionary histories. It has previously been shown that orthologous proteins may differ in domain architecture, creating challenges for orthology inference methods operating on full-length sequences. We have developed Domainoid, a new tool aiming to overcome these challenges faced by full-length orthology methods by inferring orthology on the domain level. It employs the InParanoid algorithm on single domains separately, to infer groups of orthologous domains. RESULTS: This domain-oriented approach allows detection of discordant domain orthologs, cases where different domains on the same protein have different evolutionary histories. In addition to domain level analysis, protein level orthology based on the fraction of domains that are orthologous can be inferred. Domainoid orthology assignments were compared to those yielded by the conventional full-length approach InParanoid, and were validated in a standard benchmark. CONCLUSIONS: Our results show that domain-based orthology inference can reveal many orthologous relationships that are not found by full-length sequence approaches. AVAILABILITY: https://bitbucket.org/sonnhammergroup/domainoid/.


Assuntos
Proteínas/análise , Algoritmos , Evolução Biológica , Proteínas/genética , Software
4.
Nucleic Acids Res ; 45(D1): D687-D690, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27742821

RESUMO

HieranoiDB (http://hieranoiDB.sbc.su.se) is a freely available on-line database for hierarchical groups of orthologs inferred by the Hieranoid algorithm. It infers orthologs at each node in a species guide tree with the InParanoid algorithm as it progresses from the leaves to the root. Here we present a database HieranoiDB with a web interface that makes it easy to search and visualize the output of Hieranoid, and to download it in various formats. Searching can be performed using protein description, identifier or sequence. In this first version, orthologs are available for the 66 Quest for Orthologs reference proteomes. The ortholog trees are shown graphically and interactively with marked speciation and duplication nodes that show the inferred evolutionary scenario, and allow for correct extraction of predicted orthologs from the Hieranoid trees.


Assuntos
Bases de Dados Genéticas , Navegador , Evolução Biológica , Proteômica/métodos , Software
5.
Bioinformatics ; 33(8): 1154-1159, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096085

RESUMO

Motivation: The initial step in many orthology inference methods is the computationally demanding establishment of all pairwise protein similarities across all analysed proteomes. The quadratic scaling with proteomes has become a major bottleneck. A remedy is offered by the Hieranoid algorithm which reduces the complexity to linear by hierarchically aggregating ortholog groups from InParanoid along a species tree. Results: We have further developed the Hieranoid algorithm in many ways. Major improvements have been made to the construction of multiple sequence alignments and consensus sequences. Hieranoid version 2 was evaluated with standard benchmarks that reveal a dramatic increase in the coverage/accuracy tradeoff over version 1, such that it now compares favourably with the best methods. The new parallelized cluster mode allows Hieranoid to be run on large data sets in a much shorter timespan than InParanoid, yet at similar accuracy. Contact: mateusz.kaduk@scilifelab.se. Availability and Implementation: Perl code freely available at http://hieranoid.sbc.su.se/ . Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Homologia de Sequência , Alinhamento de Sequência , Software
6.
New Phytol ; 205(3): 1288-1295, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25382585

RESUMO

Bioactive gibberellins (GAs) have been implicated in short day (SD)-induced growth cessation in Populus, because exogenous applications of bioactive GAs to hybrid aspens (Populus tremula × tremuloides) under SD conditions delay growth cessation. However, this effect diminishes with time, suggesting that plants may cease growth following exposure to SDs due to a reduction in sensitivity to GAs. In order to validate and further explore the role of GAs in growth cessation, we perturbed GA biosynthesis or signalling in hybrid aspen plants by overexpressing AtGA20ox1, AtGA2ox2 and PttGID1.3 (encoding GA biosynthesis enzymes and a GA receptor). We found trees with elevated concentrations of bioactive GA, due to overexpression of AtGA20ox1, continued to grow in SD conditions and were insensitive to the level of FLOWERING LOCUS T2 (FT2) expression. As transgenic plants overexpressing the PttGID1.3 GA receptor responded in a wild-type (WT) manner to SD conditions, this insensitivity did not result from limited receptor availability. As high concentrations of bioactive GA during SD conditions were sufficient to sustain shoot elongation growth in hybrid aspen trees, independent of FT2 expression levels, we conclude elongation growth in trees is regulated by both GA- and long day-responsive pathways, similar to the regulation of flowering in Arabidopsis thaliana.


Assuntos
Giberelinas/metabolismo , Hibridização Genética , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Populus/metabolismo , Árvores/metabolismo , Relógios Circadianos , Cruzamentos Genéticos , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotoperíodo , Fotorreceptores de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Front Immunol ; 14: 1125884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114042

RESUMO

We present a new Rep-Seq analysis tool called corecount, for analyzing genotypic variation in immunoglobulin (IG) and T cell receptor (TCR) genes. corecount is highly efficient at identifying V alleles, including those that are infrequently used in expressed repertoires and those that contain 3' end variation that are otherwise refractory to reliable identification during germline inference from expressed libraries. Furthermore, corecount facilitates accurate D and J gene genotyping. The output is highly reproducible and facilitates the comparison of genotypes from multiple individuals, such as those from clinical cohorts. Here, we applied corecount to the genotypic analysis of IgM libraries from 16 individuals. To demonstrate the accuracy of corecount, we Sanger sequenced all the heavy chain IG alleles (65 IGHV, 27 IGHD and 7 IGHJ) from one individual from whom we also produced two independent IgM Rep-seq datasets. Genomic analysis revealed that 5 known IGHV and 2 IGHJ sequences are truncated in current reference databases. This dataset of genomically validated alleles and IgM libraries from the same individual provides a useful resource for benchmarking other bioinformatic programs that involve V, D and J assignments and germline inference, and may facilitate the development of AIRR-Seq analysis tools that can take benefit from the availability of more comprehensive reference databases.


Assuntos
Região Variável de Imunoglobulina , Humanos , Genótipo , Região Variável de Imunoglobulina/genética , Sequência de Bases , Imunoglobulina M/genética
8.
Front Immunol ; 13: 818440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419009

RESUMO

The accurate germline gene assignment and assessment of somatic hypermutation in antibodies induced by immunization or infection are important in immunological studies. Here, we illustrate issues specific to the construction of comprehensive immunoglobulin (IG) germline gene reference databases for outbred animal species using rhesus macaques, a frequently used non-human primate model, as a model test case. We demonstrate that the genotypic variation found in macaque germline inference studies is reflected in similar levels of gene diversity in genomic assemblies. We show that the high frequency of IG heavy chain V (IGHV) region structural and gene copy number variation between subjects means that individual animals lack genes that are present in other animals. Therefore, gene databases compiled from a single or too few animals will inevitably result in inaccurate gene assignment and erroneous SHM level assessment for those genes it lacks. We demonstrate this by assigning a test macaque IgG library to the KIMDB, a database compiled of germline IGHV sequences from 27 rhesus macaques, and, alternatively, to the IMGT rhesus macaque database, based on IGHV genes inferred primarily from the genomic sequence of the rheMac10 reference assembly, supplemented with 10 genes from the Mmul_051212 assembly. We found that the use of a gene-restricted database led to overestimations of SHM by up to 5% due to misassignments. The principles described in the current study provide a model for the creation of comprehensive immunoglobulin reference databases from outbred species to ensure accurate gene assignment, lineage tracing and SHM calculations.


Assuntos
Variações do Número de Cópias de DNA , Genes de Imunoglobulinas , Região Variável de Imunoglobulina , Animais , Biblioteca Gênica , Região Variável de Imunoglobulina/genética , Imunoglobulinas/genética , Macaca mulatta/genética
9.
Front Immunol ; 12: 815680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087534

RESUMO

Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.


Assuntos
Imunoglobulina M/genética , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca mulatta/genética , Macaca mulatta/imunologia , Recombinação V(D)J , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Biologia Computacional/métodos , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunogenética/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Vírus da Imunodeficiência Símia/imunologia , Especificidade da Espécie
10.
Methods Mol Biol ; 1910: 469-504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278674

RESUMO

This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution.


Assuntos
Evolução Molecular , Domínios Proteicos/genética , Proteínas/genética , Evolução Biológica , Bases de Dados Genéticas , Genoma , Filogenia , Proteínas/química
11.
Front Immunol ; 10: 660, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024532

RESUMO

Next generation sequencing (NGS) of immunoglobulin (Ig) repertoires (Rep-seq) enables examination of the adaptive immune system at an unprecedented level. Applications include studies of expressed repertoires, gene usage, somatic hypermutation levels, Ig lineage tracing and identification of genetic variation within the Ig loci through inference methods. All these applications require starting libraries that allow the generation of sequence data with low error rate and optimal representation of the expressed repertoire. Here, we provide detailed protocols for the production of libraries suitable for human Ig germline gene inference and Ig repertoire studies. Various parameters used in the process were tested in order to demonstrate factors that are critical to obtain high quality libraries. We demonstrate an improved 5'RACE technique that reduces the length constraints of Illumina MiSeq based Rep-seq analysis but allows for the acquisition of sequences upstream of Ig V genes, useful for primer design. We then describe a 5' multiplex method for library preparation, which yields full length V(D)J sequences suitable for genotype identification and novel gene inference. We provide comprehensive sets of primers targeting IGHV, IGKV, and IGLV genes. Using the optimized protocol, we produced IgM, IgG, IgK, and IgL libraries and analyzed them using the germline inference tool IgDiscover to identify expressed germline V alleles. This process additionally uncovered three IGHV, one IGKV, and six IGLV novel alleles in a single individual, which are absent from the IMGT reference database, highlighting the need for further study of Ig genetic variation. The library generation protocols presented here enable a robust means of analyzing expressed Ig repertoires, identifying novel alleles and producing individualized germline gene databases from humans.


Assuntos
Imunoglobulinas/genética , Mutação/genética , Alelos , Células Cultivadas , Bases de Dados como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Biblioteca Gênica , Genótipo , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-24951433

RESUMO

Modern chromatography-based metabolomics measurements generate large amounts of data in the form of abundances of metabolites. An increasingly popular way of representing and analyzing such data is by means of association networks. Ideally, such a network can be interpreted in terms of the underlying biology. A property of chromatography-based metabolomics data is that the measurement error structure is complex: apart from the usual (random) instrumental error there is also correlated measurement error. This is intrinsic to the way the samples are prepared and the analyses are performed and cannot be avoided. The impact of correlated measurement errors on (partial) correlation networks can be large and is not always predictable. The interplay between relative amounts of uncorrelated measurement error, correlated measurement error and biological variation defines this impact. Using chromatography-based time-resolved lipidomics data obtained from a human intervention study we show how partial correlation based association networks are influenced by correlated measurement error. We show how the effect of correlated measurement error on partial correlations is different for direct and indirect associations. For direct associations the correlated measurement error usually has no negative effect on the results, while for indirect associations, depending on the relative size of the correlated measurement error, results can become unreliable. The aim of this paper is to generate awareness of the existence of correlated measurement errors and their influence on association networks. Time series lipidomics data is used for this purpose, as it makes it possible to visually distinguish the correlated measurement error from a biological response. Underestimating the phenomenon of correlated measurement error will result in the suggestion of biologically meaningful results that in reality rest solely on complicated error structures. Using proper experimental designs that allow for the quantification of the size of correlated and uncorrelated errors, can help to identify suspicious connections in association networks constructed from (partial) correlations.


Assuntos
Metabolômica/métodos , Metabolômica/normas , Benzodiazepinas/farmacologia , Cromatografia Líquida , Simulação por Computador , Humanos , Lipídeos/sangue , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma/efeitos dos fármacos , Olanzapina , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA