Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 23(10): 628-640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970912

RESUMO

The spontaneous replay of patterns of activity related to past experiences and memories is a striking feature of brain activity, as is the coherent activation of sets of brain areas - particularly those comprising the default mode network (DMN) - during rest. We propose that these two phenomena are strongly intertwined and that their potential functions overlap. In the 'cascaded memory systems model' that we outline here, we hypothesize that the DMN forms the backbone for the propagation of replay, mediating interactions between the hippocampus and the neocortex that enable the consolidation of new memories. The DMN may also independently ignite replay cascades, which support reactivation of older memories or high-level semantic representations. We suggest that transient cortical activations, inducing long-range correlations across the neocortex, are a key mechanism supporting a hierarchy of representations that progresses from simple percepts to semantic representations of causes and, finally, to whole episodes.


Assuntos
Rede de Modo Padrão , Neocórtex , Hipocampo/fisiologia , Humanos , Neocórtex/fisiologia
2.
Hippocampus ; 29(9): 802-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723982

RESUMO

Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.


Assuntos
Sincronização Cortical , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Comportamento Exploratório , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Masculino , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Descanso/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sono/fisiologia
3.
Cell Rep ; 42(9): 113015, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632747

RESUMO

The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations.


Assuntos
Hipocampo , Ritmo Teta , Ratos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
4.
Nat Commun ; 13(1): 4826, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974109

RESUMO

The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.


Assuntos
Córtex Entorrinal , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Neurônios , Memória Espacial , Animais , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Mamíferos , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia
5.
Neuron ; 106(1): 154-165.e6, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32032512

RESUMO

Temporally organized reactivation of experiences during awake immobility periods is thought to underlie cognitive processes like planning and evaluation. While replay of trajectories is well established for the hippocampus, it is unclear whether the medial prefrontal cortex (mPFC) can reactivate sequential behavioral experiences in the awake state to support task execution. We simultaneously recorded from hippocampal and mPFC principal neurons in rats performing a mPFC-dependent rule-switching task on a plus maze. We found that mPFC neuronal activity encoded relative positions between the start and goal. During awake immobility periods, the mPFC replayed temporally organized sequences of these generalized positions, resembling entire spatial trajectories. The occurrence of mPFC trajectory replay positively correlated with rule-switching performance. However, hippocampal and mPFC trajectory replay occurred independently, indicating different functions. These results demonstrate that the mPFC can replay ordered activity patterns representing generalized locations and suggest that mPFC replay might have a role in flexible behavior. VIDEO ABSTRACT.


Assuntos
Região CA1 Hipocampal/fisiologia , Tomada de Decisões/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Navegação Espacial/fisiologia , Adaptação Psicológica , Animais , Hipocampo/fisiologia , Ratos , Vigília
6.
Front Behav Neurosci ; 6: 70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23115549

RESUMO

Vicarious trial-and-errors (VTEs) are back-and-forth movements of the head exhibited by rodents and other animals when faced with a decision. These behaviors have recently been associated with prospective sweeps of hippocampal place cell firing, and thus may reflect a rodent model of deliberative decision-making. The aim of the current study was to test whether the hippocampus is essential for VTEs in a spatial memory task and in a simple visual discrimination (VD) task. We found that lesions of the hippocampus with ibotenic acid produced a significant impairment in the accuracy of choices in a serial spatial reversal (SR) task. In terms of VTEs, whereas sham-lesioned animals engaged in more VTE behavior prior to identifying the location of the reward as opposed to repeated trials after it had been located, the lesioned animals failed to show this difference. In contrast, damage to the hippocampus had no effect on acquisition of a VD or on the VTEs seen in this task. For both lesion and sham-lesion animals, adding an additional choice to the VD increased the number of VTEs and decreased the accuracy of choices. Together, these results suggest that the hippocampus may be specifically involved in VTE behavior during spatial decision making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA