Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 19(5): e1010750, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186613

RESUMO

Curli amyloid fibers are a major constituent of the extracellular biofilm matrix formed by bacteria of the Enterobacteriaceae family. Within Escherichia coli biofilms, curli gene expression is limited to a subpopulation of bacteria, leading to heterogeneity of extracellular matrix synthesis. Here we show that bimodal activation of curli gene expression also occurs in well-mixed planktonic cultures of E. coli, resulting in all-or-none stochastic differentiation into distinct subpopulations of curli-positive and curli-negative cells at the entry into the stationary phase of growth. Stochastic curli activation in individual E. coli cells could further be observed during continuous growth in a conditioned medium in a microfluidic device, which further revealed that the curli-positive state is only metastable. In agreement with previous reports, regulation of curli gene expression by the second messenger c-di-GMP via two pairs of diguanylate cyclase and phosphodiesterase enzymes, DgcE/PdeH and DgcM/PdeR, modulates the fraction of curli-positive cells. Unexpectedly, removal of this regulatory network does not abolish the bimodality of curli gene expression, although it affects dynamics of activation and increases heterogeneity of expression levels among individual cells. Moreover, the fraction of curli-positive cells within an E. coli population shows stronger dependence on growth conditions in the absence of regulation by DgcE/PdeH and DgcM/PdeR pairs. We thus conclude that, while not required for the emergence of bimodal curli gene expression in E. coli, this c-di-GMP regulatory network attenuates the frequency and dynamics of gene activation and increases its robustness to cellular heterogeneity and environmental variation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Ativação Transcricional , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/genética , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Biofilmes , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
PLoS Pathog ; 19(6): e1011451, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315106

RESUMO

Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.


Assuntos
Salmonella typhimurium , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Ilhas Genômicas/genética , Força Próton-Motriz , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
3.
J Bacteriol ; 201(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420452

RESUMO

Escherichia coli and many other bacterial species can enter into a viable but nonculturable (VBNC) state, which is a survival strategy adopted by cells exposed to adverse environmental conditions. Pyruvate is known to be one factor that promotes resuscitation of VBNC cells. Here we studied the role of a pyruvate-sensing network, composed of the histidine kinase-response regulator systems BtsS/BtsR and YpdA/YpdB and the target gene btsT, encoding the high-affinity pyruvate/H+ symporter BtsT, in the resuscitation of VBNC E. coli K-12 cells after exposure to cold for 120 days. Analysis of the proteome of VBNC cells revealed upregulation, relative to exponentially growing cells, of BtsT and other proteins involved in pyruvate metabolism. Provision of pyruvate stimulated protein and DNA biosynthesis, and thus resuscitation, in wild-type but not btsSR ypdAB mutant VBNC cells. This result was corroborated by time-dependent tracking of the resuscitation of individual VBNC E. coli cells observed in a microfluidic system. Finally, transport assays revealed that 14C-labeled pyruvate was rapidly taken up into VBNC cells by BtsT. These results provide the first evidence that pyruvate is taken up as a carbon source for the resuscitation of VBNC E. coli cells.IMPORTANCE Viable but nonculturable (VBNC) bacteria do not form colonies in standard medium but otherwise retain their metabolic activity and can express toxic proteins. Many bacterial genera, including Escherichia, Vibrio, and Listeria, have been shown to enter the VBNC state upon exposure to adverse conditions, such as low temperature, radiation, and starvation. Ultimately, these organisms pose a public health risk with potential implications for the pharmaceutical and food industries, as dormant organisms are especially difficult to selectively eliminate and VBNC bacteria can be resuscitated if placed in an environment with appropriate nutrition and temperature. Here we used a microfluidic system to monitor the resuscitation of single VBNC cells over time. We provide new molecular insights into the initiation of resuscitation by demonstrating that VBNC E. coli cells rapidly take up pyruvate with an inducible high-affinity transporter, whose expression is triggered by the BtsSR-YpdAB sensing network.


Assuntos
Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Ácido Pirúvico/metabolismo , Transdução de Sinais , Temperatura Baixa , Resposta ao Choque Frio , Escherichia coli K12/efeitos da radiação , Histidina Quinase/metabolismo , Proteoma/análise , Simportadores/metabolismo , Fatores de Transcrição/metabolismo
4.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038258

RESUMO

Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of Escherichia coli belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, yjiY and yhjX, respectively. To obtain insights into the biological significance of these TCSs, we analyzed the activation of the target promoters at the single-cell level. We found unimodal cell-to-cell variability; however, the degree of variance was strongly influenced by the available nutrients and differed between the two TCSs. We hypothesized that activation of either of the TCSs helps individual cells to replenish carbon resources. To test this hypothesis, we compared wild-type cells with the btsSR ypdAB mutant under two metabolically modulated conditions: protein overproduction and persister formation. Although all wild-type cells were able to overproduce green fluorescent protein (GFP), about half of the btsSR ypdAB population was unable to overexpress GFP. Moreover, the percentage of persister cells, which tolerate antibiotic stress, was significantly lower in the wild-type cells than in the btsSR ypdAB population. Hence, we suggest that the BtsS/BtsR and YpdA/YpdB network contributes to a balancing of the physiological state of all cells within a population.IMPORTANCE Histidine kinase/response regulator (HK/RR) systems enable bacteria to respond to environmental and physiological fluctuations. Escherichia coli and other members of the Enterobacteriaceae possess two similar LytS/LytTR-type HK/RRs, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which form a functional network. Both systems are activated in response to external pyruvate, typically when cells face overflow metabolism during post-exponential growth. Single-cell analysis of the activation of their respective target genes yjiY and yhjX revealed cell-to-cell variability, and the range of variation was strongly influenced by externally available nutrients. Based on the phenotypic characterization of a btsSR ypdAB mutant compared to the parental strain, we suggest that this TCS network supports an optimization of the physiological state of the individuals within the population.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Ácido Pirúvico/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Histidina Quinase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Regiões Promotoras Genéticas , Transdução de Sinais , Análise de Célula Única
5.
Nat Microbiol ; 9(7): 1792-1811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862602

RESUMO

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.


Assuntos
Klebsiella oxytoca , Infecções por Salmonella , Salmonella typhimurium , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Animais , Camundongos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Enterotoxinas/metabolismo , Enterotoxinas/genética , Feminino , Camundongos Endogâmicos C57BL , Infecções por Klebsiella/microbiologia , Microbiota , Microbioma Gastrointestinal , Antibiose , Benzodiazepinonas
6.
Elife ; 112022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374535

RESUMO

The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.


Assuntos
Adenosina Trifosfatases , Cromossomos Bacterianos , Plasmídeos/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo
7.
J Mol Biol ; 431(23): 4569-4588, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31034885

RESUMO

Recent research on population heterogeneity revealed fascinating insights into microbial behavior. In particular emerging single-cell technologies, image-based microfluidics lab-on-chip systems generate insights with spatio-temporal resolution, which are inaccessible with conventional tools. This review reports recent developments and applications of microfluidic single-cell cultivation technology, highlighting fields of broad interest such as growth, gene expression and antibiotic resistance and susceptibility. Combining advanced microfluidic single-cell cultivation technology for environmental control with automated time-lapse imaging as well as smart computational image analysis offers tremendous potential for novel investigation at the single-cell level. We propose on-chip control of parameters like temperature, gas supply, pressure or a change in cultivation mode providing a versatile technology platform to mimic more complex and natural habitats. Digital analysis of the acquired images is a requirement for the extraction of biological knowledge and statistically reliable results demand for robust and automated solutions. Focusing on microbial cultivations, we compare prominent software systems that emerged during the last decade, discussing their applicability, opportunities and limitations. Next-generation microfluidic devices with a high degree of environmental control combined with time-lapse imaging and automated image analysis will be highly inspiring and beneficial for fruitful interdisciplinary cooperation between microbiologists and microfluidic engineers and image analysts in the field of microbial single-cell analysis.


Assuntos
Variação Biológica da População , Fenômenos Microbiológicos , Técnicas Analíticas Microfluídicas , Microfluídica , Análise de Célula Única , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Imagem Molecular , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
8.
Microorganisms ; 7(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010155

RESUMO

Microbial cells in industrial large-scale bioreactors are exposed to fluctuating conditions, e.g., nutrient concentration, dissolved oxygen, temperature, and pH. These inhomogeneities can influence the cell physiology and metabolism, e.g., decelerate cell growth and product formation. Microfluidic systems offer new opportunities to study such effects in great detail by examining responses to varying environmental conditions at single-cell level. However, the possibility to reproduce large-scale bioreactor conditions in microscale cultivation systems has not yet been systematically investigated. Hence, we apply computational fluid dynamics (CFD) simulations to analyze and compare three commonly used microfluidic single-cell trapping and cultivation devices that are based on (i) mother machines (MM), (ii) monolayer growth chambers (MGC), and (iii) negative dielectrophoresis (nDEP). Several representative time-variant nutrient concentration profiles are applied at the chip entry. Responses to these input signals within the studied microfluidic devices are comparatively evaluated at the positions of the cultivated cells. The results are comprehensively presented in a Bode diagram that illustrates the degree of signal damping depending on the frequency of change in the inlet concentration. As a key finding, the MM can accurately reproduce signal changes that occur within 1 s or slower, which are typical for the environmental conditions observed by single cells in large-scale bioreactors, while faster changes are levelled out. In contrast, the nDEP and MGC are found to level out signal changes occurring within 10 s or faster, which can be critical for the proposed application.

9.
N Biotechnol ; 47: 50-59, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29550523

RESUMO

Microfluidics has enabled various research projects in the field of microbial single-cell analysis. In particular, single-use microfluidic cultivation devices combined with automated time-lapse imaging provide powerful approaches for analyzing microbial phenomena at the single-cell level. High spatiotemporal resolution facilitates individual cell identification and tracking, delivering detailed insights into areas like phenotypic population heterogeneity, which can be highly relevant to the fate of a microbial population and may negatively impact the efficiency of biotechnological fermentations. New tools need to be developed to access the origin of population heterogeneity and understand its functional role. In this study, we present a microfluidic device for batch cultivations inside picoliter-sized cultivation chambers that can be reversibly isolated from continuous medium supply. Therefore, the cultivation broth is simply replaced by a continuous flow of humidified air, removing any medium residue along the supply channels but preserving five picoliters of cultivation medium inside the cultivation chambers in a highly parallel manner. Living cells can grow inside our microfabricated batch chambers, which can accommodate up to several hundred cells. The chamber height approximately matches the diameter of a single cell, facilitating cell growth in monolayers that are ideal for image-based cell analysis. We successfully demonstrated the growth of Escherichia coli during continuous medium perfusion and batch cultivation conditions. As expected, the cells grew exponentially under continuous medium influx until the maximum chamber capacity was reached, but when they were cultivated under batch conditions, cellular growth underwent an exponential phase, followed by a stationary phase with obvious morphological changes.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/microbiologia , Escherichia coli/crescimento & desenvolvimento , Microfluídica/instrumentação , Análise de Célula Única/métodos , Especificidade por Substrato , Fatores de Tempo
10.
ACS Synth Biol ; 7(9): 2282-2295, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30053372

RESUMO

In nature, enzymatic reaction cascades, i.e., realized in metabolic networks, operate with unprecedented efficacy, with the reactions often being spatially and temporally orchestrated. The principle of "learning from nature" has in recent years inspired the setup of synthetic reaction cascades combining biocatalytic reaction steps to artificial cascades. Hereby, the spatial organization of multiple enzymes, e.g., by coimmobilization, remains a challenging task, as currently no generic principles are available that work for every enzyme. We here present a tunable, genetically programmed coimmobilization strategy that relies on the fusion of a coiled-coil domain as aggregation inducing-tag, resulting in the formation of catalytically active inclusion body coimmobilizates (Co-CatIBs). Coexpression and coimmobilization was proven using two fluorescent proteins, and the strategy was subsequently extended to two enzymes, which enabled the realization of an integrated enzymatic two-step cascade for the production of (1 R,2 R)-1-phenylpropane-1,2-diol (PPD), a precursor of the calicum channel blocker diltiazem. In particular, the easy production and preparation of Co-CatIBs, readily yielding a biologically produced enzyme immobilizate renders the here presented strategy an interesting alternative to existing cascade immobilization techniques.


Assuntos
Enzimas Imobilizadas/metabolismo , Corpos de Inclusão/metabolismo , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Aldeído Liases/metabolismo , Biocatálise , Cromatografia Líquida de Alta Pressão , Enzimas Imobilizadas/química , Escherichia coli/metabolismo , Propanóis/análise , Propanóis/química , Propanóis/metabolismo , Pseudomonas fluorescens/enzimologia , Ralstonia/enzimologia , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA