Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433333

RESUMO

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Assuntos
Cálcio , Cladocera , Animais , Lagos , Zooplâncton , Água
2.
Oecologia ; 203(3-4): 477-489, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975885

RESUMO

Long-chain polyunsaturated fatty acids (PUFA) are critical for reproduction and thermal adaptation. Year-round variability in the expression of fads2 (fatty acid desaturase 2) in the liver of European perch (Perca fluviatilis) in a boreal lake was tested in relation to individual variation in size, sex, and maturity, together with stable isotopes values as well as fatty acids (FA) content in different tissues and prey items. ARA and DHA primary production was restricted to the summer months, however, perch required larger amounts of these PUFA during winter, as their ARA and DHA muscle content was higher compared to summer. The expression of fads2 in perch liver increased during winter and was higher in mature females. Mature females stored DHA in their gonads already in late summer and autumn, long before the upcoming spring spawning period in May. Lower δ13CDHA values in the gonads in September suggest that these females actively synthesized DHA as part of this reproductive investment. Lower δ13CARA values in the liver of all individuals during winter suggest that perch were synthesizing essential FA to help cope with over-wintering conditions. Perch seem able to modulate its biosynthesis of physiologically required PUFA in situations of stress (fasting or cold temperatures) or in situations of high energetic demand (gonadal development). Biosynthesis of physiologically required PUFA may be an important part of survival and reproduction in aquatic food webs with long cold periods.


Assuntos
Ácidos Graxos , Percas , Humanos , Animais , Ácidos Graxos/metabolismo , Percas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Cadeia Alimentar
3.
Environ Res ; 233: 116511, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37369304

RESUMO

Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Esocidae/metabolismo , Mercúrio/análise , Lagos/química , Aminoácidos/metabolismo , Poluentes Químicos da Água/análise , Peixes/metabolismo , Monitoramento Ambiental
4.
J Fish Biol ; 103(5): 939-949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37395556

RESUMO

Predation is a major evolutionary force determining life-history traits in prey by direct and indirect mechanisms. This study focuses on life-history trait variation in crucian carp (Carassius carassius), a species well known for developing a deep body as an inducible morphological defence against predation risk. Here, the authors tested variation in growth and reproductive traits in 15 crucian carp populations in lakes along a predation risk gradient represented by increasingly efficient predator communities. Lakes were located in south-eastern Norway and were sampled in summer 2018 and 2019. The authors expected crucian carp to attain higher growth rate, larger size, and later age at maturity with increasing predation risk. In the absence of predators, they expected high adult mortality, early maturity and increased reproductive effort caused by strong intraspecific competition. They found that the life-history traits of crucian carp were clearly related to the presence of piscivores: with increasing predation risk, fish grew in body length and depth and attained larger asymptotic length and size at maturity. This growth was evident at young age, especially in productive lakes with pike, and it suggests that fish quickly outgrew the predation window by reaching a size refuge. Contrary to the authors' predictions, populations had similar age at maturity. High-predation lakes also presented low density of crucian carp. This suggests that fish from predator lakes may experience high levels of resource availability due to reduced intraspecific competition. Predation regulated life-history traits in crucian carp populations, where larger size, higher longevity and size at maturity were observed in lakes with large gaped predators.


Assuntos
Carpas , Características de História de Vida , Animais , Comportamento Predatório , Lagos , Esocidae
5.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35915625

RESUMO

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

6.
J Fish Biol ; 101(2): 389-399, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35142375

RESUMO

European whitefish is a model species for adaptive radiation of fishes in temperate and subarctic lakes. In northern Europe the most commonly observed morphotypes are a generalist (LSR) morph and a pelagic specialist (DR) morph. The evolution of a pelagic specialist morph is something of an enigma, however, as this region is characterized by long, dark winters with pelagic primary production limited to a brief window in late summer. We conducted the first winter-based study of polymorphic whitefish populations to determine the winter ecology of both morphs, and we combined seasonal diet and stable isotope analysis with several proxies of condition in three polymorphic whitefish populations. The generalist LSR morph fed on benthic and pelagic prey in summer but was solely reliant on benthic prey in winter. This was associated with a noticeable but moderate reduction in condition, lipid content and stomach fullness in winter relative to summer. In contrast, the DR whitefish occupied a strict pelagic niche in both seasons. A significant reduction in pelagic prey during winter resulted in severe decrease in condition, lipid content and stomach fullness in DR whitefish in winter relative to summer, with the pelagic morph apparently approaching starvation in winter. We suggest that this divergent approach to seasonal foraging is associated with the divergent life-history traits of both morphs.


Assuntos
Salmonidae , Animais , Europa (Continente) , Lagos/química , Lipídeos , Estações do Ano
7.
Glob Chang Biol ; 27(2): 282-296, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33124178

RESUMO

Climate change in the Arctic is outpacing the global average and land-use is intensifying due to exploitation of previously inaccessible or unprofitable natural resources. A comprehensive understanding of how the joint effects of changing climate and productivity modify lake food web structure, biomass, trophic pyramid shape and abundance of physiologically essential biomolecules (omega-3 fatty acids) in the biotic community is lacking. We conducted a space-for-time study in 20 subarctic lakes spanning a climatic (+3.2°C and precipitation: +30%) and chemical (dissolved organic carbon: +10 mg/L, total phosphorus: +45 µg/L and total nitrogen: +1,000 µg/L) gradient to test how temperature and productivity jointly affect the structure, biomass and community fatty acid content (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) of whole food webs. Increasing temperature and productivity shifted lake communities towards dominance of warmer, murky-water-adapted taxa, with a general increase in the biomass of primary producers, and secondary and tertiary consumers, while primary invertebrate consumers did not show equally clear trends. This process altered various trophic pyramid structures towards an hour glass shape in the warmest and most productive lakes. Increasing temperature and productivity had negative fatty acid content trends (mg EPA + DHA/g dry weight) in primary producers and primary consumers, but not in secondary nor tertiary fish consumers. The massive biomass increment of fish led to increasing areal fatty acid content (kg EPA + DHA/ha) towards increasingly warmer, more productive lakes, but there were no significant trends in other trophic levels. Increasing temperature and productivity are shifting subarctic lake communities towards systems characterized by increasing dominance of cyanobacteria and cyprinid fish, although decreasing quality in terms of EPA + DHA content was observed only in phytoplankton, zooplankton and profundal benthos.


Assuntos
Ácidos Graxos Ômega-3 , Lagos , Animais , Biomassa , Cadeia Alimentar , Fitoplâncton , Temperatura
8.
Environ Sci Technol ; 53(4): 1834-1843, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30636402

RESUMO

Temporally (1965-2015) and spatially (55°-70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries ( n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3-7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Finlândia , Peixes , Humanos , Lagos , Noruega , Federação Russa , Suécia
9.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889953

RESUMO

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Assuntos
Ecossistema , Camada de Gelo , Lagos , Plâncton/fisiologia , Estações do Ano
10.
J Anim Ecol ; 83(6): 1501-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24738779

RESUMO

Ecological systems are often characterized as stable entities. However, basal productivity in most ecosystems varies between seasons, particularly in subarctic and polar areas. How this variability affects higher trophic levels or entire food webs remains largely unknown, especially in these high-latitude regions. We undertook a year-long study of benthic (macroinvertebrate) and pelagic (zooplankton) resource availability, along with short (day/days: stomach content)-, medium (month: liver δ(13)C and δ(15)N isotopes)- and long-term (season: muscle δ(13)C and δ(15)N isotopes) assessments of resource use by a generalist fish, the European whitefish, in a deep, oligotrophic, subarctic lake in northern Europe. Due to the long ice-covered winter period, we expected to find general benthic reliance throughout the year, but also a seasonal importance of zooplankton to the diet, somatic growth and gonadal development of whitefish. Benthic and pelagic resource availability varied between seasons: peak littoral benthic macroinvertebrate density occurred in mid-winter, whereas maximum zooplankton density was observed in summer. Whitefish stomach content revealed a reliance on benthic prey items during winter and pelagic prey in summer. A seasonal shift from benthic to pelagic prey was evident in liver isotope ratios, but muscle isotope ratios indicated a year-round reliance on benthic macroinvertebrates. Whitefish activity levels as well as somatic and gonadal growth all peaked during the summer, coinciding with the zooplankton peak and the warmest water temperature. Stable isotopes of muscle consistently depicted the most important resource, benthic macroinvertebrates, whereas short-term indicators, that is, diet and stable isotopes of liver, revealed the seasonal significance of pelagic zooplankton for somatic growth and gonad development. Seasonal variability in resource availability strongly influences consumer growth and reproduction and may also be important in other ecosystems facing pronounced annual weather fluctuations.


Assuntos
Dieta , Comportamento Alimentar , Reprodução , Salmonidae/fisiologia , Animais , Isótopos de Carbono/análise , Feminino , Finlândia , Conteúdo Gastrointestinal/química , Lagos , Fígado/química , Masculino , Músculos/química , Isótopos de Nitrogênio/análise , Salmonidae/crescimento & desenvolvimento , Estações do Ano
11.
Sci Total Environ ; 940: 173570, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38825201

RESUMO

Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.


Assuntos
Biomassa , Monitoramento Ambiental , Lagos , Fitoplâncton , Lagos/química , Suécia , Finlândia , Mudança Climática , Fósforo/análise , Nitrogênio/análise , Cianobactérias/crescimento & desenvolvimento
12.
Ecol Evol ; 13(6): e10185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293123

RESUMO

High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger a diverse array of ecological responses. Climate warming affects the ecophysiology of fish, and fish close to the cold end of their thermal distribution are expected to increase somatic growth from increased temperatures and a prolonged growth season, which in turn affects maturation schedules, reproduction, and survival, boosting population growth. Accordingly, fish species living in ecosystems close to their northern range edge should increase in relative abundance and importance, and possibly displace cold-water adapted species. We aim to document whether and how population-level effects of warming are mediated by individual-level responses to increased temperatures, shift community structure, and composition in high latitude ecosystems. We studied 11 cool-water adapted perch populations in communities dominated by cold-water adapted species (whitefish, burbot, and charr) to investigate changes in the relative importance of the cool-water perch during the last 30 years of rapid warming in high latitude lakes. In addition, we studied the individual-level responses to warming to clarify the potential mechanisms underlying the population effects. Our long-term series (1991-2020) reveal a marked increase in numerical importance of the cool-water fish species, perch, in ten out of eleven populations, and in most fish communities perch is now dominant. Moreover, we show that climate warming affects population-level processes via direct and indirect temperature effects on individuals. Specifically, the increase in abundance arises from increased recruitment, faster juvenile growth, and ensuing earlier maturation, all boosted by climate warming. The speed and magnitude of the response to warming in these high latitude fish communities strongly suggest that cold-water fish will be displaced by fish adapted to warmer water. Consequently, management should focus on climate adaptation limiting future introductions and invasions of cool-water fish and mitigating harvesting pressure on cold-water fish.

13.
Sci Total Environ ; 903: 166674, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647960

RESUMO

Eutrophication, i.e. increasing level of nutrients and primary production, is a central environmental change of lakes globally with wide effects on food webs. However, how eutrophication affects the synthesis of physiologically essential biomolecules (omega-3 fatty acids) and their transfer to higher trophic levels at the whole food web level is not well understood. We assessed food web (phytoplankton, zooplankton, and fish) biomass, community structure and fatty acid content (eicosapentaenoic acid [EPA], and docosahexaenoic acid [DHA]), together with fatty acid specific primary production in 12 Finnish boreal lakes covering the total nutrient gradient from oligotrophic to highly eutrophic lakes (4-140 µg TP l-1; 413-1814 µg TN l-1). Production was measured as the incorporation of 13C-NaHCO3 into phytoplankton fatty acids and differentiated into volumetric production (production per litre of water) and productivity (production per phytoplankton biomass). Increases in nutrients led to higher biomass of phytoplankton, zooplankton and fish communities while also affecting community composition. Eutrophication negatively influenced the contribution of phytoplankton biomass preferentially grazed by zooplankton (<35 µm). Total volumetric production saturated at high phytoplankton biomass while EPA volumetric production presented a logarithmic relationship with nutrient increase. Meanwhile, total and EPA productivity had unimodal responses to this change in nutrients. DHA volumetric production and productivity presented large variation with increases in total phosphorus, but a unimodal model best described DHA changes with eutrophication. Results showed that eutrophication impaired the transfer of EPA and DHA into zooplankton and fish, showing a clear negative impact in some species (e.g. perch) while having no effect in other species (e.g. roach, ruffe). Results show non-linear trends in fatty acid production and productivity peaking at nutrient concentrations 22-35 µg l-1 TP followed by a gradual decrease.

14.
Evolution ; 76(8): 1905-1913, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797649

RESUMO

The European whitefish (Coregonus lavaretus) species complex is a classic example of recent adaptive radiation. Here, we examine a whitefish population introduced to northern Finnish Lake Tsahkal in the late 1960s, where three divergent morphs (viz. littoral, pelagic, and profundal feeders) were found 10 generations after. Using demographic modeling based on genomic data, we show that whitefish morphs evolved during a phase of strict isolation, refuting a rapid sympatric divergence scenario. The lake is now an artificial hybrid zone between morphs originated in allopatry. Despite their current syntopy, clear genetic differentiation remains between two of the three morphs. Using admixture mapping, we identify five SNPs associated with gonad weight variation, a proxy for sexual maturity and spawning time. We suggest that ecological adaptations in spawning time evolved in allopatry are currently maintaining partial reproductive isolation in the absence of other barriers to gene flow.


Assuntos
Salmonidae , Animais , Fluxo Gênico , Lagos , Isolamento Reprodutivo , Salmonidae/genética , Simpatria
15.
Sci Total Environ ; 838(Pt 1): 155982, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588838

RESUMO

Environmental change, including joint effects of increasing dissolved organic carbon (DOC) and total phosphorus (TP) in boreal northern lakes may affect food web energy sources and the biochemical composition of organisms. These environmental stressors are enhanced by anthropogenic land-use and can decrease the quality of polyunsaturated fatty acids (PUFAs) in seston and zooplankton, and therefore, possibly cascading up to fish. In contrast, the content of mercury in fish increases with lake browning potentially amplified by intensive forestry practises. However, there is little evidence on how these environmental stressors simultaneously impact beneficial omega-3 fatty acid (n3-FA) and total mercury (THg) content of fish muscle for human consumption. A space-for-time substitution study was conducted to assess whether environmental stressors affect Eurasian perch (Perca fluviatilis) allochthony and muscle nutritional quality [PUFA, THg, and their derivative, the hazard quotient (HQ)]. Perch samples were collected from 31 Finnish lakes along pronounced lake size (0.03-107.5 km2), DOC (5.0-24.3 mg L-1), TP (5-118 µg L-1) and land-use gradients (forest: 50.7-96.4%, agriculture: 0-32.6%). These environmental gradients were combined using principal component analysis (PCA). Allochthony for individual perch was modelled using source and consumer δ2H values. Perch allochthony increased with decreasing lake pH and increasing forest coverage (PC1), but no correlation between lake DOC and perch allochthony was found. Perch muscle THg and omega-6 fatty acid (n6-FA) content increased with PC1 parallel with allochthony. Perch muscle DHA (22:6n3) content decreased, and ALA (18:3n3) increased towards shallower murkier lakes (PC2). Perch allochthony was positively correlated with muscle THg and n6-FA content, but did not correlate with n3-FA content. Hence, the quality of perch muscle for human consumption decreases (increase in HQ) with increasing forest coverage and decreasing pH, potentially mediated by increasing fish allochthony.


Assuntos
Mercúrio , Percas , Animais , Ácidos Graxos , Ácidos Graxos Insaturados/análise , Lagos , Mercúrio/análise , Músculos/química , Percas/fisiologia , Fósforo
16.
Sci Total Environ ; 824: 153715, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149079

RESUMO

Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.


Assuntos
Mercúrio , Regiões Árticas , Mudança Climática , Ecossistema , Lagos , Mercúrio/análise
17.
Sci Total Environ ; 834: 155221, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427623

RESUMO

Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.


Assuntos
Mercúrio , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Monitoramento Ambiental , Lagos , Mamíferos , Mercúrio/análise
18.
Sci Total Environ ; 812: 152420, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953836

RESUMO

Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Carbono , Invertebrados , Lagos , Rios
19.
Mol Ecol ; 20(18): 3838-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21831252

RESUMO

Species introductions are considered one of the major drivers of biodiversity loss via ecological interactions and genetic admixture with local fauna. We examined two well-recognized fish species, native whitefish (Coregonus lavaretus) and introduced vendace (Coregonus albula), as well as their morphological hybrids in a single lake to test for selection against hybrids and backcrosses in the wild. A representative random subsample of 693 individuals (27.8%) was taken from the total catch of coregonids. This subsample was examined with the aim to select c. 50 individuals of pure whitefish (n = 52), pure vendace (n = 55) and putative hybrid (n = 19) for genetic analyses. The subsequent microsatellites and mitochondrial (mt) DNA analyses provided compelling evidence of hybridization and introgression. Of the 126 fish examined, four were found to be F(1) , 14 backcrosses to whitefish and seven backcrosses to vendace. The estimates of historical gene flow suggested higher rates from introduced vendace into native whitefish than vice versa, whereas estimates of contemporary gene flow were equal. Mitochondrial introgression was skewed, with 18 backcrosses having vendace mtDNA and only three with whitefish mtDNA. Hybrids and backcrosses had intermediate morphology and niche utilization compared with parental species. No evidence of selection against hybrids or backcrosses was apparent, as both hybrid and backcross growth rates and fecundities were high. Hybrids (F(1) ) were only detected in 2 year-classes, suggesting temporal variability in mating between vendace and whitefish. However, our data show that hybrids reached sexual maturity and reproduced actively, with backcrosses recorded from six consecutive year-classes, whereas no F(2) individuals were found. The results indicate widespread introgression, as 10.8% of coregonids were estimated to be backcrosses.


Assuntos
Variação Genética , Genética Populacional , Hibridização Genética , Espécies Introduzidas , Salmonidae/genética , Seleção Genética , Análise de Variância , Animais , Sequência de Bases , Pesos e Medidas Corporais , Primers do DNA/genética , DNA Mitocondrial/genética , Finlândia , Água Doce , Fluxo Gênico/genética , Funções Verossimilhança , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Densidade Demográfica , Salmonidae/anatomia & histologia , Análise de Sequência de DNA , Especificidade da Espécie
20.
Sci Total Environ ; 779: 146261, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030265

RESUMO

Subarctic lakes are getting warmer and more productive due to the joint effects of climate change and intensive land-use practices (e.g. forest clear-cutting and peatland ditching), processes that potentially increase leaching of peat- and soil-stored mercury into lake ecosystems. We sampled biotic communities from primary producers (algae) to top consumers (piscivorous fish), in 19 subarctic lakes situated on a latitudinal (69.0-66.5° N), climatic (+3.2 °C temperature and +30% precipitation from north to south) and catchment land-use (pristine to intensive forestry areas) gradient. We first tested how the joint effects of climate and productivity influence mercury biomagnification in food webs focusing on the trophic magnification slope (TMS) and mercury baseline (THg baseline) level, both derived from linear regression between total mercury (log10THg) and organism trophic level (TL). We examined a suite of environmental and biotic variables thought to explain THg baseline and TMS with stepwise generalized multiple regression models. Finally, we assessed how climate and lake productivity affect the THg content of top predators in subarctic lakes. We found biomagnification of mercury in all studied lakes, but with variable TMS and THg baseline values. In stepwise multiple regression models, TMS was best explained by negative relationships with food chain length, climate-productivity gradient, catchment properties, and elemental C:N ratio of the top predator (full model R2 = 0.90, p < 0.001). The model examining variation in THg baseline values included the same variables with positive relationships (R2 = 0.69, p = 0.014). Mass-standardized THg content of a common top predator (1 kg northern pike, Esox lucius) increased towards warmer and more productive lakes. Results indicate that increasing eutrophication via forestry-related land-use activities increase the THg levels at the base of the food web and in top predators, suggesting that the sources of nutrients and mercury should be considered in future bioaccumulation and biomagnification studies.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Fatores Biológicos , Ecossistema , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Lagos , Mercúrio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA