Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 79(4): 924-932, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290591

RESUMO

BACKGROUND & AIMS: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS: We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS: In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS: VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS: A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Terapêutica com RNAi , Ensaios Clínicos Controlados Aleatórios como Assunto , Antivirais , DNA Viral , Antígenos E da Hepatite B , Hepatite B/tratamento farmacológico
2.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894622

RESUMO

Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease.


Assuntos
Doença de Fabry , alfa-Galactosidase , Camundongos , Animais , alfa-Galactosidase/genética , Doença de Fabry/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Hidrolases , Radioisótopos de Flúor/química
3.
Nucleic Acids Res ; 48(8): 4028-4040, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170309

RESUMO

In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2'-deoxy-2'-fluoro and 2'-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5' end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5' end was more stable in the presence of 5'-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5'-exonuclease degradation afforded by the ANA modification.


Assuntos
Acetilgalactosamina/química , Carboidratos/química , Interferência de RNA , RNA Interferente Pequeno/química , Álcoois Açúcares/química , Animais , Células COS , Chlorocebus aethiops , Exorribonucleases , Hepatócitos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Pré-Albumina/genética , Ribonucleotídeos/química
4.
Nano Lett ; 17(11): 7160-7168, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035540

RESUMO

Novel translational approaches based on clinical modular nanoplatforms are needed in order to treat solid cancers according to their discrete molecular features. In the present study, we show that the clinical nanopharmaceutical Ferumoxytol, which consists of a glucose-based coat surrounding an iron oxide core, could identify molecular characteristics of prostate cancer, corresponding to unique phases of the disease continuum. By affixing a targeting probe for the prostate-specific membrane antigen on its surface, the nanopharmaceutical was able to assess the functional state of the androgen receptor pathway via MRI, guiding therapy and delivering it with the same clinical nanoparticle. In order to simultaneously inhibit signaling from key oncogenic pathways of more advanced forms of prostate cancer, a single-agent therapy for early stage disease to inhibit DNA replication, as well as combination therapy with two drugs co-retained within the nanopharmaceutical's polymeric coating, were tested and resulted in complete tumor ablation. Recalcitrant and terminal forms of the disease were effectively treated with a nanopharmaceutical delivering a combination that upregulates endoplasmic reticulum stress and inhibits metastasis, thereby showing that this multifunctional nanoplatform can be used in the clinic for patient stratification, as well as precision treatment based on the individual's unique disease features.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Óxido Ferroso-Férrico/química , Nanomedicina/métodos , Nanopartículas/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antígenos de Superfície/análise , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Nanopartículas/ultraestrutura , Medicina de Precisão/métodos
5.
Wound Repair Regen ; 25(5): 774-791, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28922523

RESUMO

Chronic wounds affect 12-15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220+ /CD19+ /IgM+ /IgD+ B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2-3 days in wild-type mice and 5-6 days in obese diabetic mice. The treatment led to full closure in 43% of chronic diabetic wounds, as compared to only 5% in saline-treated controls. Applying equivalent numbers of T cells or disrupted B cells failed to reproduce these effects, indicating that live B cells mediated pro-healing responses. Topically applied B cell treatment was associated with significantly reduced scar size, increased collagen deposition and maturation, enhanced angiogenesis, and increased nerve growth into and under the healing wound. ß-III tubulin+ nerve endings in scars of wounds treated acutely with B cells showed increased relative expression of growth-associated protein 43. The improved healing associated with B cell treatment was supported by significantly increased fibroblast proliferation and decreased apoptosis in the wound bed and edges, altered kinetics of neutrophil infiltration, as well as an increase in TGF-ß and a significant reduction in MMP2 expression in wound granulation tissue. Our findings indicate that the timeline and efficacy of wound healing can be experimentally manipulated through the direct application of mature, naive B cells, which effectively modify the balance of mature immune cell populations within the wound microenvironment and accelerate the healing process.


Assuntos
Linfócitos B , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus Experimental/complicações , Dermatopatias/terapia , Pele/patologia , Cicatrização/imunologia , Doença Aguda , Animais , Biópsia , Sobrevivência Celular , Doença Crônica , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pele/imunologia , Dermatopatias/etiologia , Dermatopatias/patologia
6.
Nano Lett ; 15(12): 8032-43, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26540670

RESUMO

Novel multifunctional platforms are needed for oncology in order to assist physicians during surgery and chemotherapy. In the present study, we show that polymeric nanobeacons, consisting of the glucose-based polymer dextran, can be used to guide surgery and improve drug delivery. For imaging, the nanobeacons stably retained the positron emitter 89-zirconium and the MRI contrast agent gadolinium, without the need of a chelator. In addition to using them for PET imaging, the (89)Zr-nanobeacons guided the surgical resection of sentinel lymph nodes, utilizing their inherent Cerenkov luminescence. Through weak electrostatic interactions, the nanoparticles carried combinations of chemotherapeutics for the simultaneous inhibition of oncogenic pathways, resulting in enhanced tumor regression. The nanobeacons also allowed monitoring of drug release via MRI, through the quenching of the gadolinium signal by the coloaded drug, making them a new multifunctional theranostic nanotechnology platform for the clinic.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanotecnologia , Polímeros/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus
7.
Small ; 10(6): 1202-11, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24339142

RESUMO

A magnetic nanosensor-based method is described to screen a library of drugs for potential binding to toxins. Screening is performed by measuring changes in the magnetic relaxation signal of the nanosensors (bMR nanosensors) in aqueous suspension upon addition of the toxin. The Anthrax lethal factor (ALF) is selected as a model toxin to test the ability of our bMR nanosensor-based screening method to identify potential inhibitors of the toxin. Out of 30 molecules screened, sulindac, naproxen and fusaric acid are found to bind LF, with dissociation constants in the low micromolar range. Further biological analysis of the free molecules in solution indicate that sulindac and its metabolic products inhibited LF cytotoxicity to macrophages with IC50 values in the micromolar range. Meanwhile, fusaric acid is found to be less effective at inhibiting LF cytotoxicity, while naproxen does not inhibit LF toxicity. Most importantly, when the sulindac and fusaric acid-bMR nanosensors themselves are tested as LF inhibitors, as opposed to the corresponding free molecules, they are stronger inhibitors of LF with IC50 values in the nanomolar range. Taken together, these studies show that a bMR nanosensors-based assay can be used to screen known drugs and other small molecules for inhibitor of toxins. The method can be easily modified to screen for inhibitors of other molecular interactions and not only the selected free molecule can be study as potential inhibitors but also the bMR nanosensors themselves achieving greater inhibitory potential.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Magnetismo/instrumentação , Magnetismo/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Animais , Antígenos de Bactérias , Ligação Competitiva/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Corantes Fluorescentes/farmacologia , Ácido Fusárico/química , Ácido Fusárico/farmacologia , Camundongos , Inibidores de Proteases/análise , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Sulindaco/química , Sulindaco/farmacologia
8.
Nat Commun ; 14(1): 1970, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031257

RESUMO

Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.


Assuntos
Dependovirus , Terapia Genética , Interferência de RNA , Dependovirus/genética , Dependovirus/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes , RNA de Cadeia Dupla , Vetores Genéticos/genética
9.
J Am Chem Soc ; 133(41): 16680-8, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21910482

RESUMO

Herein we describe the design and synthesis of a folate-doxorubicin conjugate with activatable fluorescence and activatable cytotoxicity. In this study we discovered that the cytotoxicity and fluorescence of doxorubicin are quenched (OFF) when covalently linked with folic acid. Most importantly, when the conjugate is designed with a disulfide bond linking the targeting folate unit and the cytotoxic doxorubicin, a targeted activatable prodrug is obtained that becomes activated (ON) within the cell by glutathione-mediated dissociation and nuclear translocation, showing enhanced fluorescence and cellular toxicity. In our novel design, folic acid acted as both a targeting ligand for the folate receptor as well as a quencher for doxorubicin's fluorescence.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Ácido Fólico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Doxorrubicina/síntese química , Doxorrubicina/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluorescência , Ácido Fólico/síntese química , Ácido Fólico/química , Humanos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
10.
J Am Chem Soc ; 133(10): 3668-76, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21341659

RESUMO

The target-induced clustering of magnetic nanoparticles is typically used for the identification of clinically relevant targets and events. A decrease in the water proton transverse NMR relaxation time, or T(2), is observed upon clustering, allowing the sensitive and accurate detection of target molecules. We have discovered a new mechanistically unique nanoparticle-target interaction resulting in a T(2) increase and demonstrate herein that this increase, and its associated r(2) relaxivity decrease, are also observed upon the interaction of the nanoparticles with ligands or molecular entities. Small molecules, proteins, and a 15-bp nucleic acid sequence were chemically conjugated to polyacrylic-acid-coated iron oxide nanoparticles, and all decreased the original nanoparticle r(2) value. Further experiments established that the r(2) decrease was inversely proportional to the number of ligands bound to the nanoparticle and the molecular weight of the bound ligand. Additional experiments revealed that the T(2)-increasing mechanism was kinetically faster than the conventional clustering mechanism. Most importantly, under conditions that result in T(2) increases, as little as 5.3 fmol of Bacillus anthracis plasmid DNA (pX01 and pX02), 8 pmol of the cholera toxin B subunit (Ctb), and even a few cancer cells in blood were detected. Transition from the binding to the clustering mechanism was observed in the carbohydrate-, Ctb-, and DNA-sensing systems, simply by increasing the target concentration significantly above the nanoparticle concentration, or using Ctb in its pentameric form as opposed to its monomer. Collectively, these results demonstrate that the molecular architectures resulting from the interaction between magnetic nanosensors and their targets directly govern water proton NMR relaxation. We attribute the observed T(2) increases to the bound target molecules partially obstructing the diffusion of solvent water molecules through the superparamagnetic iron oxide nanoparticles' outer relaxation spheres. Finally, we anticipate that this novel interaction can be incorporated into new clinical and field detection applications, due to its faster kinetics relative to the conventional nanoparticle-clustering assays.


Assuntos
DNA/análise , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Proteínas/análise , Bacillus subtilis/genética , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Plasmídeos/análise , Proteínas/metabolismo
11.
Anal Chem ; 83(7): 2547-53, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21370817

RESUMO

The reliable and sensitive detection of cancer-specific biomarkers is important for the diagnosis and treatment of cancer. Hence, detection of these biomarkers has to be reliably and rapidly performed in diverse settings. A limitation of the conventional biomarker-screening method of enzyme-linked immunosorbent assay (ELISA) is the employment of labile components, such as hydrogen peroxide and horseradish peroxidase. Previously, we reported that nanoceria is able to oxidize various colorimertic dyes at acidic pH, such as 3,3',5,5'-tetramethylbenzydine (TMB) and 2,2-azinobis-(3-ethylbenzothizoline-6-sulfonic acid) (AzBTS), and an assay was designed for screening the folate receptor. Herein, we show that the ability of nanoceria to oxidize a substrate can be tuned by modulating the pH. Results showed that nanoceria can oxidize the nonfluorescent substrate ampliflu, either to the very stable fluorescent product resorufin at pH 7.0 or to the nonfluorescent resazurin at pH 4.0. On the basis of these findings, we conjugated Protein G to immobilize antibodies on the surface of nanoceria, in order to detect the expression of prototypic cancer biomarkers at pH 7.0, such as the folate receptor and EpCAM. We found that within 3 h, nanoceria identified the expression of the folate receptor and EpCAM on lung carcinoma and breast adenocarcinoma cells, respectively. Traditional ELISA had a readout time of 15 h and a higher detection threshold, while requiring multiple washing steps. Considering these results and nanoceria's ability to oxidize ampliflu to its stable fluorescent product at neutral pH, the use of antibody-carrying nanoceria in the lab and point-of-care molecular diagnostics is anticipated.


Assuntos
Biomarcadores Tumorais/análise , Materiais Biomiméticos/química , Cério/química , Fluorometria/métodos , Nanopartículas/química , Oxirredutases/metabolismo , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Concentração de Íons de Hidrogênio
12.
Bioconjug Chem ; 22(2): 307-14, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21226491

RESUMO

When covalently bound to an appropriate ligand, iron oxide nanoparticles can bind to a specific target of interest. This interaction can be detected through changes in the solution's spin-spin relaxation times (T2) via magnetic relaxation measurements. In this report, a strategy of molecular mimicry was used in order to identify targeting ligands that bind to the cholera toxin B subunit (CTB). The cellular CTB-receptor, ganglioside GM1, contains a pentasaccharide moiety consisting in part of galactose and glucose units. We therefore predicted that CTB would recognize carbohydrate-conjugated iron oxide nanoparticles as GM1 mimics, thus producing a detectable change in the T2 relaxation times. Magnetic relaxation experiments demonstrated that CTB interacted with the galactose-conjugated nanoparticles. This interaction was confirmed via surface plasmon resonance studies using either the free or nanoparticle-conjugated galactose molecule. The galactose-conjugated nanoparticles were then used as CTB sensors achieving a detection limit of 40 pM. Via magnetic relaxation studies, we found that CTB also interacted with dextran-coated nanoparticles, and surface plasmon resonance studies also confirmed this interaction. Additional experiments demonstrated that the dextran-coated nanoparticle can also be used as CTB sensors and that dextran can prevent the internalization of CTB into GM1-expressing cells. Our work indicates that magnetic nanoparticle conjugates and magnetic relaxation detection can be used as a simple and fast method to identify targeting ligands via molecular mimicry. Furthermore, our results show that the dextran-coated nanoparticles represent a low-cost approach for CTB detection.


Assuntos
Cólera/diagnóstico , Magnetismo , Animais , Membrana Celular/química , Chlorocebus aethiops , Toxina da Cólera/química , Dextranos/química , Compostos Férricos/química , Gangliosídeo G(M1)/química , Galactose/química , Ligantes , Conformação Molecular , Mimetismo Molecular , Nanopartículas/química , Ressonância de Plasmônio de Superfície , Células Vero
13.
Mol Pharm ; 7(4): 1209-22, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20536259

RESUMO

The effective administration of therapeutic proteins has received increased attention for the treatment of various diseases. Encapsulation of these proteins in various matrices, as a method of protein structure and function preservation, is a widely used approach that results in maintenance of the protein's function. However, targeted delivery and tracking of encapsulated therapeutic proteins to the affected cells is still a challenge. In an effort to advance the targeted delivery of a functional apoptosis-initiating protein (cytochrome c) to cancer cells, we formulated theranostic polymeric nanoparticles for the simultaneous encapsulation of cytochrome c and a near-infrared dye to folate-expressing cancer cells. The polymeric nanoparticles were prepared using a novel water-soluble hyperbranched polyhydroxyl polymer that allows for dual encapsulation of a hydrophilic protein and an amphiphilic fluorescent dye. Our protein therapeutic cargo is the endogenous protein cytochrome c, which upon cytoplasmic release, initiates an apoptotic response leading to programmed cell death. Results indicate that encapsulation of cytochrome c within the nanoparticle's cavities preserved the protein's enzymatic activity. The potential therapeutic property of these nanoparticles was demonstrated by the induction of apoptosis upon intracellular delivery. Furthermore, targeted delivery of cytochrome c to folate-receptor-positive cancer cells was achieved via conjugation of folic acid to the nanoparticle's surface, whereas the nanoparticle's theranostic properties were conferred via the coencapsulation of cytochrome c and a fluorescent dye. Considering that these theranostic nanoparticles can carry an endogenous cellular apoptotic initiator (cytochrome c) and a fluorescent tag (ICG) commonly used in the clinic, their use and potential translation into the clinic is anticipated, facilitating the monitoring of tumor regression.


Assuntos
Citocromos c/uso terapêutico , Diagnóstico por Imagem/métodos , Proteínas de Membrana/uso terapêutico , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polímeros/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia em Gel , Citocromos c/química , Humanos , Proteínas de Membrana/química , Microscopia Confocal , Nanopartículas/administração & dosagem , Neoplasias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Langmuir ; 26(8): 5364-73, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19957939

RESUMO

Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethyl malonate. The polymer's globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer's interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics applications.


Assuntos
Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Modelos Teóricos , Nanotecnologia , Paclitaxel/química , Paclitaxel/farmacologia , Poliésteres/síntese química , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Am Chem Soc ; 131(35): 12780-91, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19681607

RESUMO

Nanoparticle-based diagnostics typically involve the conjugation of targeting ligands to the nanoparticle to create a sensitive and specific nanosensor that can bind and detect the presence of a target, such as a bacterium, cancer cell, protein, or DNA sequence. Studies that address the effect of multivalency on the binding and detection pattern of these nanosensors, particularly on magnetic relaxation nanosensors that sense the presence of a target in a dose-dependent manner by changes in the water relaxation times (DeltaT2), are scarce. Herein, we study the effect of multivalency on the detection profile of cancer cells and bacteria in complex media, such as blood and milk. In these studies, we conjugated folic acid at two different densities (low-folate and high-folate) on polyacrylic-acid-coated iron oxide nanoparticles and studied the interaction of these magnetic nanosensors with cancer cells expressing the folate receptor. Results showed that the multivalent high-folate magnetic relaxation nanosensor performed better than its low folate counterpart, achieving single cancer cell detection in blood samples within 15 min. Similar results were also observed when a high molecular weight anti-folate antibody (MW 150 kDa) was used instead of the low molecular weight folic acid ligand (MW 441.4 kDa), although better results in terms of sensitivity, dynamic range, and speed of detection were obtained when the folate ligand was used. Studies using bacteria in milk suspensions corroborated the results observed with cancer cells. Taken together, these studies demonstrate that nanoparticle multivalency plays a key role in the interaction of the nanoparticle with the cellular target and modulate the behavior and sensitivity of the assay. Furthermore, as detection with magnetic relaxation nanosensors is a nondestructive technique, magnetic isolation and further characterization of the cancer cells is possible.


Assuntos
Separação Celular/métodos , Magnetismo , Nanopartículas/química , Marcadores de Afinidade/química , Marcadores de Afinidade/metabolismo , Animais , Bactérias/citologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colorimetria , Compostos Férricos/química , Compostos Férricos/metabolismo , Humanos , Ligantes , Peroxidase/metabolismo , Ratos
16.
Small ; 5(16): 1862-8, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19384879

RESUMO

A biocompatible, multimodal, and theranostic functional iron oxide nanoparticle is synthesized using a novel water-based method and exerts excellent properties for targeted cancer therapy, and optical and magnetic resonance imaging. For the first time, a facile, modified solvent diffusion method is used for the co-encapsulation of both an anticancer drug and near-infrared dyes. The resulting folate-derivatized theranostics nanoparticles could allow for targeted optical/magnetic resonance imaging and targeted killing of folate-expressing cancer cells.


Assuntos
Antineoplásicos/farmacologia , Compostos Férricos/química , Corantes Fluorescentes/farmacologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Difusão , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Humanos , Ligantes , Magnetismo , Neoplasias/metabolismo , Óptica e Fotônica , Solventes/química , Espectrofotometria Infravermelho/métodos
17.
Angew Chem Int Ed Engl ; 48(13): 2308-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19130532

RESUMO

Inorganic enzyme? Ceria nanoparticles exhibit unique oxidase-like activity at acidic pH values. These redox catalysts can be used in immunoassays (ELISA) when modified with targeting ligands (see picture; light blue and yellow structures are nanoparticles with attached ligands). This modification allows both for binding and for detection by the catalytic oxidation of sensitive colorimetric dyes (e.g. TMB).


Assuntos
Cério/química , Nanopartículas Metálicas/química , Polímeros/química , Catálise , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Cinética , Oxirredução , Oxirredutases/metabolismo
18.
Nat Commun ; 10(1): 1867, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000704

RESUMO

This Article contains an error in Figure 6. In panel b, the left-hand image is mistakenly described as showing fluorescence before treatment, while it in fact shows the same white light image as the right-hand panel without fluorescent overlay to better visualize the tumour location. A correct version of Figure 6b is presented in the accompanying Author Correction. The error has not been corrected in the original version of the Article.

19.
Nat Nanotechnol ; 14(6): 616-622, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911166

RESUMO

Acute myeloid leukaemia is a fatal disease for most patients. We have found that ferumoxytol (Feraheme), an FDA-approved iron oxide nanoparticle for iron deficiency treatment, demonstrates an anti-leukaemia effect in vitro and in vivo. Using leukaemia cell lines and primary acute myeloid leukaemia patient samples, we show that low expression of the iron exporter ferroportin results in a susceptibility of these cells via an increase in intracellular iron from ferumoxytol. The reactive oxygen species produced by free ferrous iron lead to increased oxidative stress and cell death. Ferumoxytol treatment results in a significant reduction of disease burden in a murine leukaemia model and patient-derived xenotransplants bearing leukaemia cells with low ferroportin expression. Our findings show how a clinical nanoparticle previously considered largely biologically inert could be rapidly incorporated into clinical trials for patients with leukaemia with low ferroportin levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Óxido Ferroso-Férrico , Leucemia Mieloide Aguda , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Aprovação de Drogas , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Protoc ; 13(2): 392-412, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29370158

RESUMO

Feraheme (FH) nanoparticles (NPs) have been used extensively for treatment of iron anemia (due to their slow release of ionic iron in acidic environments). In addition, injected FH NPs are internalized by monocytes and function as MRI biomarkers for the pathological accumulation of monocytes in disease. We have recently expanded these applications by radiolabeling FH NPs for positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging using a heat-induced radiolabeling (HIR) strategy. Imaging FH NPs using PET/SPECT has important advantages over MRI due to lower iron doses and improved quantitation of tissue NP concentrations. HIR of FH NPs leaves the physical and biological properties of the NPs unchanged and allows researchers to build on the extensive knowledge obtained about the pharmacokinetic and safety aspects of FH NPs. In this protocol, we present the step-by-step procedures for heat (120 °C)-induced bonding of three widely employed radiocations (89Zr4+ or 64Cu2+ for PET, and 111In3+ for SPECT) to FH NPs using a chelateless radiocation surface adsorption (RSA) approach. In addition, we describe the conversion of FH carboxyl groups into amines and their reaction with an N-hydroxysuccinimide (NHS) of a Cy5.5 fluorophore. This yields Cy5.5-FH, a fluorescent FH that enables the cells internalizing Cy5.5-FH to be examined using flow cytometry. Finally, we describe procedures for in vivo and ex vivo uptake of Cy5.5-FH by monocytes and for in vivo microPET/CT imaging of HIR-FH NPs. Synthesis of HIR-FH requires experience with working with radioactive cations and can be completed within <4 h. Synthesis of Cy5.5-FH NPs takes ∼17 h.


Assuntos
Óxido Ferroso-Férrico/análise , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Citometria de Fluxo/métodos , Fluorescência , Corantes Fluorescentes , Temperatura Alta , Humanos , Radioisótopos de Ferro , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Imagem Óptica/métodos , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA