Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Theor Appl Genet ; 137(4): 77, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460027

RESUMO

KEY MESSAGE: We proposed models to predict the effects of genomic and environmental factors on daily soybean growth and applied them to soybean growth data obtained with unmanned aerial vehicles. Advances in high-throughput phenotyping technology have made it possible to obtain time-series plant growth data in field trials, enabling genotype-by-environment interaction (G × E) modeling of plant growth. Although the reaction norm is an effective method for quantitatively evaluating G × E and has been implemented in genomic prediction models, no reaction norm models have been applied to plant growth data. Here, we propose a novel reaction norm model for plant growth using spline and random forest models, in which daily growth is explained by environmental factors one day prior. The proposed model was applied to soybean canopy area and height to evaluate the influence of drought stress levels. Changes in the canopy area and height of 198 cultivars were measured by remote sensing using unmanned aerial vehicles. Multiple drought stress levels were set as treatments, and their time-series soil moisture was measured. The models were evaluated using three cross-validation schemes. Although accuracy of the proposed models did not surpass that of single-trait genomic prediction, the results suggest that our model can capture G × E, especially the latter growth period for the random forest model. Also, significant variations in the G × E of the canopy height during the early growth period were visualized using the spline model. This result indicates the effectiveness of the proposed models on plant growth data and the possibility of revealing G × E in various growth stages in plant breeding by applying statistical or machine learning models to time-series phenotype data.


Assuntos
Secas , Glycine max , Glycine max/genética , Melhoramento Vegetal , Genoma , Genômica/métodos
2.
Plant Cell Physiol ; 63(7): 901-918, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35640621

RESUMO

The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.


Assuntos
Oryza , Sorghum , Proliferação de Células/genética , Grão Comestível/genética , Duplicação Gênica , Estudo de Associação Genômica Ampla , Oryza/metabolismo , Sorghum/genética
3.
Plant Cell Physiol ; 63(5): 713-728, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35312772

RESUMO

Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.


Assuntos
Oryza , Poluentes do Solo , Sorghum , Alelos , Cádmio/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Poluentes do Solo/metabolismo , Sorghum/genética , Sorghum/metabolismo
4.
Theor Appl Genet ; 134(10): 3397-3410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34264372

RESUMO

KEY MESSAGE: Despite phenotyping the training set under unfavorable conditions on smallholder farms in Madagascar, we were able to successfully apply genomic prediction to select donors among gene bank accessions. Poor soil fertility and low fertilizer application rates are main reasons for the large yield gap observed for rice produced in sub-Saharan Africa. Traditional varieties that are preserved in gene banks were shown to possess traits and alleles that would improve the performance of modern variety under such low-input conditions. How to accelerate the utilization of gene bank resources in crop improvement is an unresolved question and here our objective was to test whether genomic prediction could aid in the selection of promising donors. A subset of the 3,024 sequenced accessions from the IRRI rice gene bank was phenotyped for yield and agronomic traits for two years in unfertilized farmers' fields in Madagascar, and based on these data, a genomic prediction model was developed. This model was applied to predict the performance of the entire set of 3024 accessions, and the top predicted performers were sent to Madagascar for confirmatory trials. The prediction accuracies ranged from 0.10 to 0.30 for grain yield, from 0.25 to 0.63 for straw biomass, to 0.71 for heading date. Two accessions have subsequently been utilized as donors in rice breeding programs in Madagascar. Despite having conducted phenotypic evaluations under challenging conditions on smallholder farms, our results are encouraging as the prediction accuracy realized in on-farm experiments was in the range of accuracies achieved in on-station studies. Thus, we could provide clear empirical evidence on the value of genomic selection in identifying suitable genetic resources for crop improvement, if genotypic data are available.


Assuntos
Cromossomos de Plantas/genética , Fazendas/estatística & dados numéricos , Oryza/crescimento & desenvolvimento , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Seleção Genética , Mapeamento Cromossômico/métodos , Fazendeiros , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Proc Natl Acad Sci U S A ; 115(37): E8783-E8792, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150370

RESUMO

Pith parenchyma cells store water in various plant organs. These cells are especially important for producing sugar and ethanol from the sugar juice of grass stems. In many plants, the death of pith parenchyma cells reduces their stem water content. Previous studies proposed that a hypothetical D gene might be responsible for the death of stem pith parenchyma cells in Sorghum bicolor, a promising energy grass, although its identity and molecular function are unknown. Here, we identify the D gene and note that it is located on chromosome 6 in agreement with previous predictions. Sorghum varieties with a functional D allele had stems enriched with dry, dead pith parenchyma cells, whereas those with each of six independent nonfunctional D alleles had stems enriched with juicy, living pith parenchyma cells. D expression was spatiotemporally coupled with the appearance of dead, air-filled pith parenchyma cells in sorghum stems. Among D homologs that are present in flowering plants, Arabidopsis ANAC074 also is required for the death of stem pith parenchyma cells. D and ANAC074 encode previously uncharacterized NAC transcription factors and are sufficient to ectopically induce programmed death of Arabidopsis culture cells via the activation of autolytic enzymes. Taken together, these results indicate that D and its Arabidopsis ortholog, ANAC074, are master transcriptional switches that induce programmed death of stem pith parenchyma cells. Thus, targeting the D gene will provide an approach to breeding crops for sugar and ethanol production.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Caules de Planta/genética , Sorghum/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Carboidratos/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Geografia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Homologia de Sequência do Ácido Nucleico , Sorghum/citologia , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Breed Sci ; 71(4): 444-455, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34912171

RESUMO

According to Fisher's principles, an experimental field is typically divided into multiple blocks for local control. Although homogeneity is supposed within a block, this assumption may not be practical for large blocks, such as those including hundreds of plots. In line evaluation trials, which are essential in plant breeding, field heterogeneity must be carefully treated, because it can cause bias in the estimation of genetic potential. To more accurately estimate genotypic values in a large field trial, we developed spatial kernel models incorporating genome-wide markers, which consider continuous heterogeneity within a block and over the field. In the simulation study, the spatial kernel models were robust under various conditions. Although heritability, spatial autocorrelation range, replication number, and missing plots directly affected the estimation accuracy of genotypic values, the spatial kernel models always showed superior performance over the classical block model. We also employed these spatial kernel models for quantitative trait locus mapping. Finally, using field experimental data of bioenergy sorghum lines, we validated the performance of the spatial kernel models. The results suggested that a spatial kernel model is effective for evaluating the genetic potential of lines in a heterogeneous field.

7.
Breed Sci ; 71(3): 291-298, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34776736

RESUMO

Biological resources are the basic infrastructure of bioscience research. Rice (Oryza sativa L.) is a good experimental model for research in cereal crops and monocots and includes important genetic materials used in breeding. The availability of genetic materials, including mutants, is important for rice research. In addition, Oryza species are attractive to researchers for both finding useful genes for breeding and for understanding the mechanism of genome evolution that enables wild plants to adapt to their own habitats. NBRP-RICE contributes to rice research by promoting the usage of genetic materials, especially wild Oryza accessions and mutant lines. Our activity includes collection, preservation and distribution of those materials and the provision of basic information on them, such as morphological and physiological traits and genomic information. In this review paper, we introduce the activities of NBRP-RICE and our database, Oryzabase, which facilitates the access to NBRP-RICE resources and their genomic sequences as well as the current situation of wild Oryza genome sequencing efforts by NBRP-RICE and other institutes.

8.
Plant Cell Physiol ; 61(7): 1262-1272, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353144

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study. Admixture analysis of 460 sorghum accessions revealed that NOG belonged to the subgroup that represented Asian sorghums, and it was only distantly related to American/African accessions including BTx623. In an attempt to dissect major traits related to biomass, we generated a recombinant inbred line (RIL) from a cross between BTx623 and NOG, and we constructed a high-density linkage map based on 3,710 single-nucleotide polymorphisms obtained by restriction-site-associated DNA sequencing of 213 RIL individuals. Consequently, 13 fine quantitative trait loci (QTLs) were detected on chromosomes 2, 3, 6, 7, 8 and 9, which included five QTLs for days to heading, three for plant height (PH) and total shoot fresh weight and two for Brix. Furthermore, we identified two dominant loci for PH as being identical to the previously reported dw1 and dw3. Together, these results corroborate the diversified genome of Japanese Takakibi, while the RIL population and high-density linkage map generated in this study will be useful for dissecting other important traits in sorghum.


Assuntos
Locos de Características Quantitativas/genética , Sorghum/genética , Biomassa , Mapeamento Cromossômico , Variação Genética/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos , Sorghum/crescimento & desenvolvimento
9.
Breed Sci ; 70(2): 167-175, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32523398

RESUMO

Salinity causes major reductions in cultivated land area, crop productivity, and crop quality, and salt-tolerant crops have been required to sustain agriculture in salinized areas. The annual C4 crop plant Sorghum bicolor (L.) Moench is salt tolerant, with large variation among accessions. Sorghum's salt tolerance is often evaluated during early growth, but such evaluations are weakly related to overall performance. Here, we evaluated salt tolerance of 415 sorghum accessions grown in saline soil (0, 50, 100, and 150 mM NaCl) for 3 months. Some accessions produced up to 400 g per plant of biomass and showed no growth inhibition at 50 mM NaCl. Our analysis indicated that the genetic factors that affected biomass production under 100 mM salt stress were more different from those without salt stress, comparing to the differences between those under 50 mM and 100 mM salt stress. A genome-wide association study for salt tolerance identified two single-nucleotide polymorphisms (SNPs) that were significantly associated with biomass production, only at 50 mM NaCl. Additionally, two SNPs were significantly associated with salt tolerance index as an indicator for growth response of each accession to salt stress. Our results offer candidate genetic resources and SNP markers for breeding salt-tolerant sorghum.

10.
Breed Sci ; 70(5): 605-616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603557

RESUMO

Non-additive (dominance and epistasis) effects have remarkable influences on hybrid performance, e.g., via heterosis. Nevertheless, only additive effects are often considered in genomic predictions (GP). In this study, we demonstrated the importance of dominance effects in the prediction of hybrid performance in bioenergy sorghum [Sorghum bicolor (L.) Moench]. The dataset contained more than 400 hybrids between 200 inbred lines and two testers. The hybrids exhibited considerable heterosis in culm length and fresh weight, and the degree of heterosis was consistent with the genetic distance from the corresponding tester. The degree of heterosis was further different among subpopulations. Conversely, Brix exhibited limited heterosis. Regarding GP, we examined three statistical models and four training dataset types. In most of the dataset types, genomic best linear unbiased prediction (GBLUP) with additive effects had lower prediction accuracy than GBLUP with additive and dominance effects (GBLUP-AD) and Gaussian kernel regression (GK). The superiority of GBLUP-AD and GK depended on the level of dominance variance, which was high for culm length and fresh weight, and low for Brix. Considering subpopulations, the influence of dominance was more complex. Our findings highlight the importance of considering dominance effects in GP models for sorghum hybrid breeding.

11.
Nucleic Acids Res ; 42(Database issue): D666-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275496

RESUMO

To understand newly sequenced genomes of closely related species, comprehensively curated reference genome databases are becoming increasingly important. We have extended CyanoBase (http://genome.microbedb.jp/cyanobase), a genome database for cyanobacteria, and newly developed RhizoBase (http://genome.microbedb.jp/rhizobase), a genome database for rhizobia, nitrogen-fixing bacteria associated with leguminous plants. Both databases focus on the representation and reusability of reference genome annotations, which are continuously updated by manual curation. Domain experts have extracted names, products and functions of each gene reported in the literature. To ensure effectiveness of this procedure, we developed the TogoAnnotation system offering a web-based user interface and a uniform storage of annotations for the curators of the CyanoBase and RhizoBase databases. The number of references investigated for CyanoBase increased from 2260 in our previous report to 5285, and for RhizoBase, we perused 1216 references. The results of these intensive annotations are displayed on the GeneView pages of each database. Advanced users can also retrieve this information through the representational state transfer-based web application programming interface in an automated manner.


Assuntos
Alphaproteobacteria/genética , Cianobactérias/genética , Bases de Dados Genéticas , Genoma Bacteriano , Bradyrhizobium/genética , Genes Bacterianos , Internet , Mesorhizobium/genética , Anotação de Sequência Molecular , Rhizobium/genética , Sinorhizobium/genética
12.
Breed Sci ; 66(1): 100-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27069395

RESUMO

Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

13.
Plant Genome ; 15(4): e20244, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996857

RESUMO

Multispectral (MS) imaging enables the measurement of characteristics important for increasing the prediction accuracy of genotypic and phenotypic values for yield-related traits. In this study, we evaluated the potential application of temporal MS imaging for the prediction of aboveground biomass (AGB) in soybean [Glycine max (L.) Merr.]. Field experiments with 198 accessions of soybean were conducted with four different irrigation levels. Five vegetation indices (VIs) were calculated using MS images from soybean canopies from early vegetative to early reproductive stage. To predict the genotypic values of AGB, VIs at the different growth stages were used as secondary traits in a multitrait genomic prediction. The prediction accuracy of the genotypic values of AGB from MS and genomic data largely outperformed that of the genomic data alone before the flowering stage (90% of accessions did not flower), suggesting that it would be possible to determine cross-combinations based on the predicted genotypic values of AGB. We compared the prediction accuracy of a model using the five VIs and a model using only one VI to predict the phenotypic values of AGB and found that the difference in prediction accuracy decreased over time at all irrigation levels except for the most severe drought. The difference in the most severe drought was not as small as that in the other treatments. Only the prediction accuracy of a model using the five VIs in the most severe droughts gradually increased over time. Therefore, the optimal timing for MS imaging may depend on the irrigation levels.


Assuntos
Secas , Glycine max , Glycine max/genética , Biomassa , Genômica , Genótipo
14.
Front Plant Sci ; 13: 828864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371133

RESUMO

With the widespread use of high-throughput phenotyping systems, growth process data are expected to become more easily available. By applying genomic prediction to growth data, it will be possible to predict the growth of untested genotypes. Predicting the growth process will be useful for crop breeding, as variability in the growth process has a significant impact on the management of plant cultivation. However, the integration of growth modeling and genomic prediction has yet to be studied in depth. In this study, we implemented new prediction models to propose a novel growth prediction scheme. Phenotype data of 198 soybean germplasm genotypes were acquired for 3 years in experimental fields in Tottori, Japan. The longitudinal changes in the green fractions were measured using UAV remote sensing. Then, a dynamic model was fitted to the green fraction to extract the dynamic characteristics of the green fraction as five parameters. Using the estimated growth parameters, we developed models for genomic prediction of the growth process and tested whether the inclusion of the dynamic model contributed to better prediction of growth. Our proposed models consist of two steps: first, predicting the parameters of the dynamics model with genomic prediction, and then substituting the predicted values for the parameters of the dynamics model. By evaluating the heritability of the growth parameters, the dynamic model was able to effectively extract genetic diversity in the growth characteristics of the green fraction. In addition, the proposed prediction model showed higher prediction accuracy than conventional genomic prediction models, especially when the future growth of the test population is a prediction target given the observed values in the first half of growth as training data. This indicates that our model was able to successfully combine information from the early growth period with phenotypic data from the training population for prediction. This prediction method could be applied to selection at an early growth stage in crop breeding, and could reduce the cost and time of field trials.

15.
Plants (Basel) ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34961266

RESUMO

Developing new varieties in fruit and tea breeding programs is very costly and labor-intensive. Thus, establishing a variety discrimination system is important for protecting breeders' rights and producers' profits. Simple sequence repeat (SSR) databases that can be utilized for both next-generation sequencing (SSR-GBS) and polymerase chain reaction-capillary electrophoresis (PCR-CE) would be very useful in variety discrimination. In the present study, SSRs with tri-, tetra- and pentanucleotide repeats were examined in apple, pear and tea. Out of 37 SSRs that showed clear results in PCR-CE, 27 were suitable for SSR-GBS. Among the remaining markers, there was allele dropout for some markers that caused differences between the results of PCR-CE and SSR-GBS. For the selected 27 markers, the alleles detected by SSR-GBS were comparable to those detected by PCR-CE. Furthermore, we developed a computational pipeline for automated genotyping using SSR-GBS by setting a value "α" for each marker, a criterion whether a genotype is homozygous or heterozygous based on allele frequency. The set of 27 markers contains 10, 8 and 9 SSRs for apple, pear and tea, respectively, that are useful for both PCR-CE and SSR-GBS and suitable for automation. The databases help researchers discriminate varieties in various ways depending on sample size, markers and methods.

16.
Sci Rep ; 11(1): 9398, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931706

RESUMO

Although spikelet-related traits such as size of anther, spikelet, style, and stigma are associated with sexual reproduction in grasses, no QTLs have been reported in sorghum. Additionally, there are only a few reports on sorghum QTLs related to grain size, such as grain length, width, and thickness. In this study, we performed QTL analyses of nine spikelet-related traits (length of sessile spikelet, pedicellate spikelet, pedicel, anther, style, and stigma; width of sessile spikelet and stigma; and stigma pigmentation) and six grain-related traits (length, width, thickness, length/width ratio, length/thickness ratio, and width/thickness ratio) using sorghum recombinant inbred lines. We identified 36 and 7 QTLs for spikelet-related traits and grain-related traits, respectively, and found that most sorghum spikelet organ length- and width-related traits were partially controlled by the dwarf genes Dw1 and Dw3. Conversely, we found that these Dw genes were not strongly involved in the regulation of grain size. The QTLs identified in this study aid in understanding the genetic basis of spikelet- and grain-related traits in sorghum.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Locos de Características Quantitativas , Sorghum/genética , Grão Comestível/genética , Topos Floridos/genética , Topos Floridos/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
17.
Sci Rep ; 11(1): 19828, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615901

RESUMO

Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.


Assuntos
Resistência a Medicamentos/genética , Proteínas de Repetições Ricas em Leucina/genética , Organofosfatos/farmacologia , Praguicidas/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/genética , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Ligação Genética , Proteínas de Repetições Ricas em Leucina/metabolismo , Fenótipo , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sorghum/classificação
18.
Genes (Basel) ; 12(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440284

RESUMO

(1) Background: The genetic basis of local adaptation in conifers remains poorly understood because of limited research evidence and the lack of suitable genetic materials. Sakhalin fir (Abies sachalinensis) is an ideal organism for elucidating the genetic basis of local adaptation because its altitudinal adaptation has been demonstrated, and suitable materials for its linkage mapping are available. (2) Method: We constructed P336 and P236 linkage maps based on 486 and 516 single nucleotide polymorphisms, respectively, that were derived from double digest restriction site-associated DNA sequences. We measured the growth and eco-physiological traits associated with morphology, phenology, and photosynthesis, which are considered important drivers of altitudinal adaptation. (3) Results: The quantitative trait loci (QTLs) for growth traits, phenology, needle morphology, and photosynthetic traits were subsequently detected. Similar to previous studies on conifers, most traits were controlled by multiple QTLs with small or moderate effects. Notably, we detected that one QTL for the crown area might be a type-A response regulator, a nuclear protein responsible for the cytokinin-induced shoot elongation. (4) Conclusion: The QTLs detected in this study include potentially important genomic regions linked to altitudinal adaptation in Sakhalin fir.


Assuntos
Abies/genética , Abies/fisiologia , Adaptação Fisiológica , Altitude , Ecossistema , Locos de Características Quantitativas , Ligação Genética , Polimorfismo de Nucleotídeo Único
19.
Plant Genome ; 14(3): e20157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34595846

RESUMO

The application of remote sensing in plant breeding can provide rich information about the growth processes of plants, which leads to better understanding concerning crop yield. It has been shown that traits measured by remote sensing were also beneficial for genomic prediction (GP) because the inclusion of remote sensing data in multitrait models improved prediction accuracies of target traits. However, the present multitrait GP model cannot incorporate high-dimensional remote sensing data due to the difficulty in the estimation of a covariance matrix among the traits, which leads to failure in improving its prediction accuracy. In this study, we focused on growth models to express growth patterns using remote sensing data with a few parameters and investigated whether a multitrait GP model using these parameters could derive better prediction accuracy of soybean [Glycine max (L.) Merr.] biomass. A total of 198 genotypes of soybean germplasm were cultivated in experimental fields, and longitudinal changes of their canopy height and area were measured continuously via remote sensing with an unmanned aerial vehicle. Growth parameters were estimated by applying simple growth models and incorporated into the GP of biomass. By evaluating heritability and correlation, we showed that the estimated growth parameters appropriately represented the observed growth curves. Also, the use of these growth parameters in the multitrait GP model contributed to successful biomass prediction. We conclude that the growth models could describe the genetic variation of soybean growth curves based on several growth parameters. These dimension-reduction growth models will be indispensable for extracting useful information from remote sensing data and using this data in GP and plant breeding.


Assuntos
Glycine max , Tecnologia de Sensoriamento Remoto , Biomassa , Genômica , Melhoramento Vegetal , Glycine max/genética
20.
DNA Res ; 28(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33492369

RESUMO

We performed whole-genome Illumina resequencing of 198 accessions to examine the genetic diversity and facilitate the use of soybean genetic resources and identified 10 million single nucleotide polymorphisms and 2.8 million small indels. Furthermore, PacBio resequencing of 10 accessions was performed, and a total of 2,033 structure variants were identified. Genetic diversity and structure analysis congregated the 198 accessions into three subgroups (Primitive, World, and Japan) and showed the possibility of a long and relatively isolated history of cultivated soybean in Japan. Additionally, the skewed regional distribution of variants in the genome, such as higher structural variations on the R gene clusters in the Japan group, suggested the possibility of selective sweeps during domestication or breeding. A genome-wide association study identified both known and novel causal variants on the genes controlling the flowering period. Novel candidate causal variants were also found on genes related to the seed coat colour by aligning together with Illumina and PacBio reads. The genomic sequences and variants obtained in this study have immense potential to provide information for soybean breeding and genetic studies that may uncover novel alleles or genes involved in agronomically important traits.


Assuntos
Variação Genética , Genoma de Planta , Glycine max/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA