Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 285(27): 20748-55, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20442412

RESUMO

Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI(+)] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ(+)] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ(+)] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ(+)] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI(+)] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins.


Assuntos
Variação Genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Animais , Estabilidade de Medicamentos , Escherichia coli/genética , Genes Reporter , Humanos , Cinética , Mamíferos , Mitose/genética , Doenças Priônicas/genética , Príons/química , Príons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade , Termodinâmica
2.
Protein Sci ; 28(7): 1239-1251, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30461098

RESUMO

The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo-hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate-specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer-hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon- phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Humanos , Domínios Proteicos , Especificidade por Substrato
3.
BMC Biochem ; 9: 7, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18366654

RESUMO

BACKGROUND: Mutations in the PRNP gene account for ~15% of all prion disease cases. Little is understood about the mechanism of how some of these mutations in PRNP cause the protein to aggregate into amyloid fibers or cause disease. We have taken advantage of a chimeric protein system to study the oligopeptide repeat domain (ORD) expansions of the prion protein, PrP, and their effect on protein aggregation and amyloid fiber formation. We replaced the ORD of the yeast prion protein Sup35p with that from wild type and expanded ORDs of PrP and compared their biochemical properties in vitro. We previously determined that these chimeric proteins maintain the [PSI+] yeast prion phenotype in vivo. Interestingly, we noted that the repeat expanded chimeric prions seemed to be able to maintain a stronger strain of [PSI+] and convert from [psi-] to [PSI+] with a much higher frequency. In this study we have attempted to understand the biochemical properties of these chimeric proteins and to establish a system to study the properties of the ORD of PrP both in vivo and in vitro. RESULTS: Investigation of the chimeric proteins in vitro reveals that repeat-expansions increase aggregation propensity and that the kinetics of fiber formation depends on the number of repeats. The fiber formation reactions are promiscuous in that the chimeric protein containing 14 repeats can readily cross-seed fiber formation of proteins that have the wild type number of repeats. Morphologically, the amyloid fibers formed by repeat-expanded proteins associate with each other to form large clumps that were not as prevalent in fibers formed by proteins containing the wild type number of repeats. Despite the increased aggregation propensity and lateral association of the repeat expanded proteins, there was no corresponding increase in the stability of the fibers formed. Therefore, we predict that the differences in fibers formed with different repeat lengths may not be due to gross changes in the amyloid core. CONCLUSION: The biochemical observations presented here explain the properties of these chimeric proteins previously observed in yeast. More importantly, they suggest a mechanism for the observed correlation between age of onset and disease severity with respect to the length of the ORD in humans.


Assuntos
Amiloide/química , Amiloide/metabolismo , Mutagênese Insercional/genética , Príons/química , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Amiloide/genética , Expansão das Repetições de DNA , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fatores de Terminação de Peptídeos , Príons/genética , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética
4.
Prion ; 2(2): 45-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19098443

RESUMO

The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.


Assuntos
Amiloide/química , Príons/química , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Amiloide/genética , Amiloide/metabolismo , Animais , Humanos , Fatores de Terminação de Peptídeos , Príons/genética , Príons/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA