Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825106

RESUMO

Endemic infectious diseases remain a major challenge for dairy producers worldwide. For effective disease control programs, up-to-date prevalence estimates are of utmost importance. The objective of this study was to estimate the herd-level prevalence of bovine leukemia virus (BLV), Salmonella Dublin, and Neospora caninum in dairy herds in Alberta, Canada using a serial cross-sectional study design. Bulk tank milk samples from all Alberta dairy farms were collected 4 times, in December 2021 (n = 489), April 2022 (n = 487), July 2022 (n = 487), and October 2022 (n = 480), and tested for antibodies against BLV, S. Dublin, and N. caninum using ELISAs. Herd-level apparent prevalence was calculated as positive samples divided by total tested samples at each time point. A mixed effect modified Poisson regression model was employed to assess the association of prevalence with region, herd size, herd type, and type of milking system. Apparent prevalence of BLV was 89.4, 88.7, 86.9 and 86.9% in December, April, July, and October, respectively, whereas for S. Dublin apparent prevalence was 11.2, 6.6, 8.6, and 8.5%, and for N. caninum apparent prevalence was 18.2, 7.4, 7.8, and 15.0%. For BLV, S. Dublin and N. caninum, a total of 91.7, 15.6, and 28.1% of herds, respectively, were positive at least once, whereas 82.5, 3.6, and 3.0% of herds were ELISA-positive at all 4 times. Compared with the north region, central Alberta had a high prevalence (prevalence ratio (PR) = 1.13) of BLV-antibody positive herds, whereas south Alberta had a high prevalence (PR = 2.56) of herds positive for S. Dublin antibodies. Furthermore, central (PR = 0.52) and south regions (PR = 0.46) had low prevalence of N. caninum-positive herds compared with the north. Hutterite colony herds were more frequently BLV-positive (PR = 1.13) but less frequently N. caninum-positive (PR = 0.47). Large herds (>7,200 L/day milk delivered ∼ > 250 cows) were 1.1 times more often BLV-positive, whereas small herds (≤3,600 L/day milk delivered ∼ ≤ 125 cows) were 3.2 times more often N. caninum-positive. For S. Dublin, Hutterite-colony herds were less frequently (PR = 0.07) positive than non-colony herds only in medium and large stratum but not in small stratum. Moreover, larger herds were more frequently (PR = 2.20) S. Dublin-positive than smaller herds only in non-colony stratum but not in colony stratum. Moreover, N. caninum prevalence was 1.6 times higher on farms with conventional milking systems compared with farms with an automated milking system. These results provide up-to-date information of the prevalence of these infections that will inform investigations of within-herd prevalence of these infections and help in devising evidence-based disease control strategies.

2.
Microbiol Spectr ; : e0094624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162555

RESUMO

Conventional Mycoplasma spp. diagnostics involve culture, often considered the gold standard in diagnostic test evaluation. However, culture protocols lack empirical derivation and primarily adhere to National Mastitis Council recommendations, tracing back to initial cultivation of Mycoplasma bovis. Despite a wide range of carbon dioxide (CO2) supplementation reported in literature, specific impacts of CO2 on Mycoplasma spp. growth remain unexplored. Our objective was to assess the effect of CO2 concentration on growth detection rates of 24 Mycoplasma spp. isolates from dairy cows. These isolates, mainly M. bovis, were incubated at 37°C in triplicate and three dilution ranges under three CO2 conditions: ambient air or 5% CO2 or 10% CO2. Bacterial growth was evaluated on incubation days 3, 5, 7, and 10. When cultured using ambient air, log10 cfu/mL was lower on days 3, 5, and 7 of incubation compared with isolates incubated in the recommended 5% or 10% CO2, with less variation observed in ambient air compared with 5% or 10% CO2. However, by 10 days of incubation, no differences in the detection of observable growth were noted among isolates incubated in ambient air, 5% CO2, or 10% CO2. Consequently, Mycoplasma spp. isolated from dairy cattle demonstrated growth after the recommended 7-10 days of culture, even in the absence of supplemental CO2. Given the expected concentration of M. bovis in (sub)clinical samples had similar concentrations to those used in our study, with the majority of isolates being M. bovis, we recommend expanding CO2 concentration ranges in M. bovis culture from 10% CO2 to ambient air when incubating for 10 days. However, the turnaround time could be shortened when incubating with supplemental CO2. IMPORTANCE: Current Mycoplasma spp. culture protocols lack empirical derivation concerning carbon dioxide (CO2) supplementation and are primarily based on the initial cultivation of Mycoplasma bovis. This study indicates that the suitable range for CO2 supplementation is broader than what is currently recommended by the National Mastitis Council for culturing within the specified 7-10 days. No differences in bacterial growth detection rates were observed among ambient air, 5% CO2, or 10% CO2 supplementation during the 7- and 10-day incubation intervals. These new insights provide evidence supporting the possibility of culturing Mycoplasma spp. under ambient air conditions in a laboratory setting.

3.
Comput Struct Biotechnol J ; 19: 439-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489011

RESUMO

PURPOSE: The goal of this study was to characterize an acellular pertussis vaccine (Tdap) containing genetically modified pertussis toxin (gdPT) and TLR agonist adsorbed to AlOOH adjuvant. METHODS: Several analytical tools including nanoDSF, FTIR, and LD were used to examine the conformation of novel gdPT and the composition of AlOOH adjuvant formulations adsorbed to pertussis vaccine. RESULTS: DLS particle size results were 9.3 nm and 320 nm for gdPT. For pertussis toxoid (PT), the DLS particle size results were larger at ~440 nm. After adsorption to AlOOH, which was driven by the protein antigen, the size distribution ranged from 3.5 to 22 µm. Two thermal transitions were observed by DSC for gdPT at 70 °C and 102 °C. The main thermal transition was confirmed to be at 72 °C by nanoDSF. All three vaccine formulations showed one thermal transition: Tdap-AlOOH had a thermal transition of 74.6 °C, Tdap-E6020-AlOOH had a thermal transition at 74.2 °C, and Tdap-CpG-AlOOH had a thermal transition at 77.0 °C. Analysis of pertussis toxin (PTx) and gdPT was also performed by FTIR spectroscopy for the purpose of comparison. The second derivative of the FTIR spectra showed an additional feature for PTx at 1685 cm-1 compared to gdPT. The antigen's amide I and II regions were largely unchanged after adsorption to AlOOH adjuvant as shown by FTIR, suggesting that there were no significant changes in the secondary structure. CONCLUSION: gdPT conformation was successfully characterized using an array of analytical methods. All three Tdap formulations have similar thermal stability as shown by nanoDSF, similar size distribution as shown by LD, and similar overall secondary structure as shown by FTIR. In-line particle sizing and IR can be used as in-process characterization tools to monitor consistency of adsorbed vaccine and to confirm product identity.

4.
Comput Struct Biotechnol J ; 17: 14-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30581540

RESUMO

PURPOSE: The goal of this study is to set an empirical baseline to map the structure-function relation of the antigens from the commercialized vaccine products. METHODS: To study the structural changes of protein antigens after adsorption several analytical tools including DLS, FTIR, Fluorescence, LD, and SEM have been used. RESULTS: All antigens have shown wide range of hydrodynamic diameter from 7 nm to 182 nm. Upon adjuvantation, the size distribution has become narrow, ranging from 10 to 12 µm, and has been driven by the derived diameter of aluminum phosphate (AlPO4) adjuvant. Further to examine size and morphology of adsorbed antigens, SEM has been used. The SEM results have demonstrated that the AlPO4 adjuvant suspension and adsorbed proteins consist of submicron particles that form a continuous porous surface. Diphtheria Toxoid (DT), Tetanus Toxoid (TT), and chemically-modified Filamentous Haemagglutinin (FHA) have shown surface adsorption to AlPO4. Secondary structure alpha-helix and beta-sheet content of DT and TT has increased after adsorption to AlPO4 adjuvant as shown by FTIR, whereas no significant changes were noted for other protein antigens. The results from Intrinsic Fluorescence have shown a structural rearrangement in DT and TT, consistent with the FTIR results. Multivalent vaccine product identity has been determined by FTIR as unique fingerprint spectrum. CONCLUSION: The globular proteins such as DT and TT have shown changes in secondary structure upon adsorption to AlPO4, whereas fibrillar protein FHA has not been affected by adsorption. FTIR can be used as a lean technique to confirm product identity at different manufacturing sites.

5.
J Pharm Biomed Anal ; 157: 235-243, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29866391

RESUMO

Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31®, is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31® adjuvant, inducing an increase in both the ß-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31®. Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption.


Assuntos
Vacinas contra a Tuberculose/química , Adjuvantes Imunológicos/química , Química Farmacêutica/métodos , Oligodesoxirribonucleotídeos/química , Tamanho da Partícula , Proteínas Recombinantes de Fusão/química , Análise Espectral/métodos , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA