Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067201

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that has a significant impact on public health, with strains possessing the attachment factor intimin referred to as enterohemorrhagic E. coli (EHEC) and associated with life-threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n = 1,536) at two U.S. pork processors were sampled once per season at three stages of harvest (poststunning skins, postscald carcasses, and chilled carcasses) and then examined using PCR for Shiga toxin genes (stx), intimin genes (eae), aerobic plate count (APC), and Enterobacteriaceae counts (EBC). The prevalence of stx on skins, postscald, and chilled carcasses was 85.3, 17.5, and 5.4%, respectively, with 82.3, 7.8, and 1.7% of swabs, respectively, having stx and eae present. All stx-positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroups O121, O8, and O91 (63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00- and 2.50-log10 CFU/100 cm2, respectively. A seasonal effect was observed, with STEC prevalence lower (P < 0.05) in winter. The data from this study show significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx plus eae) from 82.3% to 1.7% within the slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCE Seven serogroups of STEC are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products, although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease-causing STEC, EHEC, demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


Assuntos
Microbiologia de Alimentos , Carne de Porco/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Estações do Ano , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/fisiologia , Estados Unidos
2.
Foodborne Pathog Dis ; 14(1): 17-22, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870549

RESUMO

Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing facilities will lead to reductions in carcass contamination. Bacteriophages have been proposed as a novel preharvest antimicrobial intervention to reduce the levels of E. coli O157:H7 on cattle hides. The objective of this study was to evaluate a commercialized phage application administered in the lairage area of commercial beef processing plants for the ability to reduce E. coli O157:H7 contamination of cattle hides and carcasses. Cattle lots either received phage spray treatment (n = 289) or did not (n = 301), as they entered the lairage environments in two separate experiments at two different commercial beef processing plants. Hide and carcass samples were collected and analyzed for E. coli O157:H7 prevalence and concentration. Cattle hides receiving phage treatment had an E. coli O157:H7 prevalence of 51.8%, whereas untreated hides had a prevalence of 57.6%. For carcass samples, the E. coli O157 prevalence in treated and untreated samples was 17.1% and 17.6%, respectively. The results obtained from these experiments demonstrated that the treatment of cattle hides with bacteriophages before processing did not produce a significant reduction of E. coli O157:H7 on cattle hides or beef carcasses during processing.


Assuntos
Bacteriófagos , Escherichia coli O157/isolamento & purificação , Manipulação de Alimentos , Carne Vermelha/microbiologia , Animais , Bovinos , Contagem de Colônia Microbiana , Escherichia coli O157/virologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos
3.
Appl Environ Microbiol ; 81(3): 1101-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452286

RESUMO

The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination.


Assuntos
Microbiologia do Ar , Ração Animal/microbiologia , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Animais , Bovinos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão
4.
Appl Environ Microbiol ; 80(2): 506-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212567

RESUMO

The development and implementation of effective antimicrobial interventions by the beef processing industry in the United States have dramatically reduced the incidence of beef trim contamination by Escherichia coli O157:H7. However, individual processing plants still experience sporadic peaks in contamination rates where multiple E. coli O157:H7-positive lots are clustered in a short time frame. These peaks have been referred to as "high event periods" (HEP) of contamination. The results reported here detail the characterization of E. coli O157:H7 isolates from 21 HEP across multiple companies and processing plants to gain insight regarding the mechanisms causing these incidents. Strain genotypes were determined by pulsed-field gel electrophoresis, and isolates were investigated for characteristics linking them to human illness. Through these analyses, it was determined that individual HEP show little to no diversity in strain genotypes. Hence, each HEP has one strain type that makes up most, if not all, of the contamination. This is shown to differ from the genotypic diversity of E. coli O157:H7 found on the hides of cattle entering processing plants. In addition, it was found that a large proportion (81%) of HEP are caused by strain types associated with human illness. These results pose a potential challenge to the current model for finished product contamination during beef processing.


Assuntos
Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Bovinos , Eletroforese em Gel de Campo Pulsado , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Variação Genética , Humanos , Estados Unidos
5.
J Food Prot ; 87(3): 100217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184149

RESUMO

The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Animais , Bovinos , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Água/farmacologia , Carne , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Salmonella , Contaminação de Alimentos/análise
6.
J Food Prot ; 87(6): 100273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599382

RESUMO

Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.


Assuntos
Fezes , Animais , Bovinos , Fezes/microbiologia , Sorogrupo , Humanos , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/isolamento & purificação , Contaminação de Alimentos/análise
7.
J Food Prot ; 87(6): 100288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697484

RESUMO

Escherichia coli commonly found in the gastrointestinal tracts of food animals include Shiga toxin-producing E. coli (STEC, stx+, eae-), Enterohemorrhagic E. coli (EHEC, stx+, eae+), Enteropathogenic E. coli (EPEC, stx-, eae+), and "nondiarrheagenic" E. coli (NDEC, stx-, eae-). EHEC, EPEC, and STEC are associated with foodborne disease outbreaks. During meat processing, disinfectants are employed to control various bacteria, including human pathogens. Concerns exist that E. coli resistant to antibiotics are less susceptible to disinfectants used during meat processing. Since EHEC, EPEC, and STEC with reduced susceptibility to disinfectants are potential public health risks, the goal of this study was to evaluate the association of antibiotic resistant (ABR) E. coli with increased tolerance to 4% lactic acid (LA) and 150 ppm quaternary ammonium compounds (QACs). A pool of 3,367 E. coli isolated from beef cattle, veal calves, swine, and sheep at various processing stages was screened to identify ABR E. coli. Resistance to ≥1 of the six antibiotics examined was identified in 27.9%, 36.1%, 54.5%, and 28.7% among the NDEC (n = 579), EHEC (n = 693), EPEC (n = 787), and STEC (n = 1308) isolates evaluated, respectively. Disinfectant tolerance did not differ (P > 0.05) between ABR and antibiotic susceptible EHEC isolates. Comparable frequencies (P > 0.05) of biofilm formation or congo red binding were observed between ABR and antibiotic susceptible strains of E. coli. Understanding the frequencies of ABR and disinfectant tolerance among E. coli present in food-animal is a critically important component of meat safety.


Assuntos
Antibacterianos , Desinfetantes , Escherichia coli , Carne Vermelha , Desinfetantes/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Carne Vermelha/microbiologia , Humanos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Bovinos , Carne/microbiologia , Contaminação de Alimentos/análise
8.
Appl Environ Microbiol ; 79(14): 4294-303, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645203

RESUMO

Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 10(4) CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.


Assuntos
Derrame de Bactérias , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/classificação , Escherichia coli O157/genética , Animais , Tipagem de Bacteriófagos/veterinária , Bacteriófagos/genética , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Contagem de Colônia Microbiana/veterinária , Eletroforese em Gel de Campo Pulsado/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Técnicas de Genotipagem/veterinária , Análise Multivariada , Filogenia , Polimorfismo de Nucleotídeo Único , Prevalência , Estados Unidos/epidemiologia
9.
Foodborne Pathog Dis ; 10(4): 368-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23566273

RESUMO

Bovine peripheral lymph nodes (LNs), including subiliac LNs, have been identified as a potential source of human exposure to Salmonella enterica, when adipose trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in peripheral LNs of feedlot and cull cattle, a cross-sectional study was undertaken in which 3327 subiliac LNs were collected from cattle at harvest in seven plants, located in three geographically distinct regions of the United States. Samples were collected in three seasons: Fall 2010, Winter/Spring 2011, and Summer/Fall 2011. A convenience sample of 76 LNs per day, 2 days per season (approximately 1 month apart), was collected per plant, from carcasses held in the cooler for no less than 24 h. Every 10(th) carcass half on a rail was sampled, in an attempt to avoid oversampling any single cohort of cattle. Median point estimates of S. enterica contamination were generally low (1.3%); however, median Salmonella prevalence was found to be greater in subiliac LNs of feedlot cattle (11.8%) compared to those of cull cattle (0.65%). Enumeration analysis of a subset of 618 feedlot cattle LNs showed that 67% of those harboring S. enterica (97 of 144) did so at concentrations ranging from <0.1 to 1.8 log10 CFU/g, while 33% carried a higher burden of S. enterica, with levels ranging from 1.9 to >3.8 log10 CFU/g. Serotyping of S. enterica isolated identified 24 serotypes, with the majority being Montevideo (44.0%) and Anatum (24.8%). Antimicrobial susceptibility phenotypes were determined for all isolates, and the majority (86.1%) were pansusceptible; however, multidrug-resistant isolates (8.3%) were also occasionally observed. As Salmonella contained within LNs are protected from carcass interventions, research is needed to define opportunities for mitigating the risk of Salmonella contamination in LNs of apparently healthy cattle.


Assuntos
Portador Sadio , Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Linfonodos/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Estudos Transversais , Testes de Sensibilidade Microbiana , Fenótipo , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Estações do Ano , Sorotipagem , Estados Unidos
10.
J Food Prot ; 86(3): 100040, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916548

RESUMO

Thermal treatment interventions consistently provide effective pathogen reductions. However, the cost of maintaining high temperature of 95°C in order to raise the surface temperature of carcasses to 82°C is very expensive. Therefore, beef processors need to identify thermal application times and temperatures that optimize the treatment effects with less maintenance cost. The objectives of this study were to determine the efficacy of hot water or steam at 71°C for 6 s and cascade e-ion plasma treatment for 2 s in reducing pathogens on the surface of fresh beef compared to the thermal treatment at 82°C for 15 s. Hot water at 71°C for 6 s reduced Escherichia coli O157:H7 and Salmonella by 2.38 and 2.48 log CFU/cm2, while steam treatment at 71°C for 6 s reduced E. coli O157:H7 and Salmonella by 2.94 and 3.06 log CFU/cm2, respectively. Cascade e-ion plasma treatment for 2 s reduced E. coli O157:H7 on surface of fresh beef by 1.89 log CFU/cm2. The findings indicate that short treatment time with appropriate temperature could serve as an effective carcass intervention to improve the safety of fresh beef.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Vapor , Manipulação de Alimentos , Salmonella , Temperatura , Contagem de Colônia Microbiana , Microbiologia de Alimentos
11.
J Food Prot ; 86(6): 100088, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019183

RESUMO

Traditional kosher meat processing involves the following steps after slaughtering: soaking with water to remove blood, salting to help draw out more blood, and rinsing to remove salt. However, the impact of the salt used on foodborne pathogens and beef quality is not well understood. The objectives of the current study were to determine the effectiveness of salt in reducing pathogens in a pure culture model, on surfaces of inoculated fresh beef during kosher processing, and the effect of salt on beef quality. The pure culture studies indicated that the reduction of E. coli O157:H7, non-O157 STEC, and Salmonella increased with increasing salt concentrations. With salt concentrations from 3 to 13%, salt reduced E. coli O157:H7, non-O157 STEC, and Salmonella ranging from 0.49 to 1.61 log CFU/mL. For kosher processing, the water-soaking step did not reduce pathogenic and other bacteria on the surface of fresh beef. Salting and rinsing steps reduced non-O157 STEC, E. coli O157:H7, and Salmonella ranging from 0.83 to 1.42 log CFU/cm2, and reduced Enterobacteriaceae, coliforms, and aerobic bacteria by 1.04, 0.95, and 0.70 log CFU/cm2, respectively. The salting process for kosher beef resulted in reducing pathogens on the surface of fresh beef, color changes, increased salt residues, and increased lipid oxidation on the final products.


Assuntos
Escherichia coli O157 , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Salmonella , Carne/microbiologia , Cloreto de Sódio/farmacologia
12.
Appl Environ Microbiol ; 78(17): 6341-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706056

RESUMO

Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety.


Assuntos
Biofilmes/crescimento & desenvolvimento , Sorotipagem , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/fisiologia , Microbiologia de Alimentos
13.
Appl Environ Microbiol ; 78(8): 2716-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327585

RESUMO

The objective of this study was to characterize Salmonella enterica contamination on carcasses in two large U.S. commercial pork processing plants. The carcasses were sampled at three points, before scalding (prescald), after dehairing/polishing but before evisceration (preevisceration), and after chilling (chilled final). The overall prevalences of Salmonella on carcasses at these three sampling points, prescald, preevisceration, and after chilling, were 91.2%, 19.1%, and 3.7%, respectively. At one of the two plants, the prevalence of Salmonella was significantly higher (P < 0.01) for each of the carcass sampling points. The prevalences of carcasses with enumerable Salmonella at prescald, preevisceration, and after chilling were 37.7%, 4.8%, and 0.6%, respectively. A total of 294 prescald carcasses had Salmonella loads of >1.9 log CFU/100 cm(2), but these carcasses were not equally distributed between the two plants, as 234 occurred at the plant with higher Salmonella prevalences. Forty-one serotypes were identified on prescald carcasses with Salmonella enterica serotypes Derby, Typhimurium, and Anatum predominating. S. enterica serotypes Typhimurium and London were the most common of the 24 serotypes isolated from preevisceration carcasses. The Salmonella serotypes Johannesburg and Typhimurium were the most frequently isolated serotypes of the 9 serotypes identified from chilled final carcasses. Antimicrobial susceptibility was determined for selected isolates from each carcass sampling point. Multiple drug resistance (MDR), defined as resistance to three or more classes of antimicrobial agents, was identified for 71.2%, 47.8%, and 77.5% of the tested isolates from prescald, preevisceration, and chilled final carcasses, respectively. The results of this study indicate that the interventions used by pork processing plants greatly reduce the prevalence of Salmonella on carcasses, but MDR Salmonella was isolated from 3.2% of the final carcasses sampled.


Assuntos
Farmacorresistência Bacteriana , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Suínos/microbiologia , Matadouros , Animais , Carga Bacteriana , Manipulação de Alimentos , Fenótipo , Prevalência , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Sorotipagem , Estados Unidos/epidemiologia
14.
J Food Prot ; 85(4): 632-638, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935943

RESUMO

ABSTRACT: Meat contamination by Salmonella enterica is a serious public health concern. Available data have suggested that biofilm formation at processing plants and contaminated contact surfaces might contribute to meat contamination. Because transfer from contact surfaces to food products via direct contact has been deemed the most common bacteria transmission route that can lead to contamination, we evaluated the effect of Salmonella biofilm forming ability, contact surface material, and beef surface tissue type on Salmonella biofilm transfer from hard surfaces to beef products. Salmonella biofilms developed on the common contact surfaces stainless steel (SS) and polyvinylchloride (PVC) were transferred consecutively via 30 s of direct contact to either lean muscle or adipose tissue surfaces of 15 pieces of beef trim. The Salmonella biofilm cells could be effectively transferred multiple times from the contact surfaces to the beef trim as indicated by quantifiable Salmonella cells on most meat samples. Biofilm forming ability had the most significant impact (P < 0.05) on transfer efficiency. More cells of Salmonella strains that formed strong biofilms were transferred after each contact and contaminated more meat samples with quantifiable cells compared with strains that formed weak biofilms. Contact surface materials also affected transferability. Salmonella biofilms on SS transferred more efficiently than did those on PVC. In contrast, the two types of meat surface tissues were not significantly different (P > 0.05) in biofilm transfer efficiency. Beef trim samples that were in contact with biofilms but did not have quantifiable Salmonella cells were positive for Salmonella after enrichment culture. Our results indicate the high potential of Salmonella biofilms on common contact surfaces in meat processing plants to cause product cross-contamination.


Assuntos
Salmonella enterica , Salmonella , Animais , Biofilmes , Bovinos , Microbiologia de Alimentos , Carne/microbiologia , Salmonella/fisiologia , Aço Inoxidável
15.
Sci Rep ; 12(1): 5305, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351927

RESUMO

Certain strains of Escherichia coli possess and express the toxin colibactin (Clb) which induces host mutations identical to the signature mutations of colorectal cancer (CRC) that lead to tumorigenic lesions. Since cattle are a known reservoir of several Enterobacteriaceae including E. coli, this study screened for clb amongst E. coli isolated from colons of cattle-at-harvest (entering beef processing facility; n = 1430), across the beef processing continuum (feedlot to finished subprimal beef; n = 232), and in ground beef (n = 1074). Results demonstrated that clb+ E. coli were present in cattle and beef. Prevalence of clb+ E. coli from colonic contents of cattle and ground beef was 18.3% and 5.5%, respectively. clb+ E. coli were found susceptible to commonly used meat processing interventions. Whole genome sequencing of 54 bovine and beef clb+ isolates showed clb occurred in diverse genetic backgrounds, most frequently in phylogroup B1 (70.4%), MLST 1079 (42.6%), and serogroup O49 (40.7%).


Assuntos
Infecções por Escherichia coli , Policetídeos , Animais , Bovinos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Tipagem de Sequências Multilocus , Peptídeos
16.
J Food Prot ; 85(8): 1114-1121, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653643

RESUMO

ABSTRACT: Salmonella is a common cause of foodborne illness in the United States, and several strains of Salmonella have been identified as resistant to antibiotics. It is not known whether strains that are antibiotic resistant (ABR) and that have some tolerance to antimicrobial compounds are also able to resist the inactivation effects of antimicrobial interventions used in fresh meat processing. Sixty-eight Salmonella isolates (non-ABR and ABR strains) were treated with half concentrations of lactic acid (LA), peracetic acid (PAA), and cetylpyridinium chloride (CPC), which are used in beef processing plants to screen for tolerant strains. Six strains each from non-ABR and ABR Salmonella that were most tolerant of LA (2%), PAA (200 ppm), and CPC (0.4%) were selected. Selected strains were inoculated on surfaces of fresh beef and subjected to spray wash treatment with 4% LA, 400 ppm PAA, or 0.8% CPC for the challenge study. Tissue samples were collected before and after each antimicrobial treatment for enumeration of survivors. Spray treatment with LA, PAA, or CPC significantly reduced non-ABR Salmonella and ABR Salmonella on surfaces of fresh beef by 1.95, 1.22, and 1.33 log CFU/cm2, and 2.14, 1.45, and 1.43 log CFU/cm2, respectively. The order of effectiveness was LA > PAA = CPC. The findings also indicated that LA, PAA, and CPC were equally (P ≤ 0.05) effective against non-ABR and ABR Salmonella on surfaces of fresh beef. These data contribute to the body of work that indicates that foodborne pathogens that have acquired both antibiotic resistance and antimicrobial tolerance are still equally susceptible to meat processing antimicrobial intervention treatments.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bovinos , Cetilpiridínio/farmacologia , Contagem de Colônia Microbiana , Manipulação de Alimentos , Microbiologia de Alimentos , Carne , Ácido Peracético/farmacologia , Salmonella
17.
Appl Environ Microbiol ; 77(9): 3002-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398483

RESUMO

The objective of this study was to determine the time period that Escherichia coli O157:H7 survives on the hides of cattle. Extensive research has been conducted and is ongoing to identify and develop novel preharvest intervention strategies to reduce the presence of E. coli O157:H7 on live cattle and subsequent transfer to processed carcasses. If a reduction of E. coli O157:H7 levels in feces can be achieved through preharvest intervention, it is not known how long it would take for such reductions to be seen on the hide. In the study presented herein, three trials were conducted to follow E. coli O157:H7 hide prevalence over time. For each trial, 36 animals were housed in individual stanchions to minimize or prevent hide contamination events. Through prevalence determination and isolate genotyping with pulsed-field gel electrophoresis, survival of E. coli O157:H7 on the hides of live cattle was determined to be short lived, with an approximate duration of 9 days or less. The results of this study suggest that any preharvest interventions that are to be administered at the end of the finishing period will achieve maximum effect in reducing E. coli O157:H7 levels on cattle hides if given 9 days before the cattle are presented for processing. However, it should be noted that interventions reducing pathogen shedding would also contribute to decreasing hide contamination through lowering the contamination load of the processing plant lairage environment, regardless of the time of application.


Assuntos
Escherichia coli O157/isolamento & purificação , Viabilidade Microbiana , Pele/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Escherichia coli O157/classificação , Escherichia coli O157/genética , Genótipo , Tipagem Molecular , Fatores de Tempo
18.
Appl Environ Microbiol ; 77(5): 1783-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239549

RESUMO

The prevalence and diversity of multidrug-resistant (MDR) Salmonella enterica strains associated with cattle at harvest in the United States were examined. Hides and carcasses of cattle were sampled at processing plants (n = 6) located in four geographically distant regions from July 2005 to April 2006. The mean prevalences of Salmonella on hides, preevisceration carcasses (immediately after hide removal), and postintervention carcasses (in the chiller and after the full complement of interventions) were 89.6%, 50.2%, and 0.8%, respectively. The values for MDR Salmonella enterica strains (defined as those resistant to two or more antimicrobials) as percentages of Salmonella prevalence were 16.7% (95% confidence interval [CI], 8.3 to 25.1%; median percent prevalence, 6.9%), 11.7% (95% CI, 4.4 to 19.0%; median, 4.8%), and 0.33% (95% CI, -0.3 to 0.70%; median, 0%), respectively. In this study, 16,218 Salmonella hide and carcass isolates were screened for antimicrobial resistance. Of these, 978 (6.0%) unique MDR S. enterica isolates were identified and serotyped and their XbaI pulsed-field gel electrophoresis (PFGE) profiles determined. The predominant MDR S. enterica serotypes observed were Newport (53.1%), Typhimurium (16.6%), and Uganda (10.9%). Differences in MDR S. enterica prevalence were detected, and PFGE analysis revealed both epidemic clusters (profiles found in plants in multiple regions/seasons) and endemic clusters (profiles observed in plants in limited regions/seasons) within several of the MDR serotypes examined. Despite these differences, multiple-hurdle processing interventions employed at all plants were found to be quite effective and decreased Salmonella carcass contamination by 98.4% (95% CI, 97.6 to 99.7%).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Variação Genética , Salmonelose Animal/microbiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Análise por Conglomerados , Eletroforese em Gel de Campo Pulsado , Genótipo , Tipagem Molecular , Salmonella enterica/classificação , Sorotipagem , Estados Unidos
19.
J Food Prot ; 84(3): 408-417, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108462

RESUMO

ABSTRACT: Many foodborne pathogens, including Escherichia coli O157:H7 and Salmonella enterica, can develop biofilms on contact surfaces at meat processing plants. Owing to the high tolerance of the biofilm cells associated with the three-dimensional biofilm structure and the well-expressed bacterial extracellular polymeric substances, it is a real challenge to completely inactivate and remove mature biofilms, as well as further prevent biofilm reoccurrence and pathogen survival. In the present study, we evaluated the effectiveness of consecutive treatments (10 to 120 min per treatment) by repeatedly applying a multicomponent sanitizer, based on a functional mechanism by synergistic combination of hydrogen peroxide and quaternary ammonia compounds, against biofilms formed by E. coli O157:H7 and S. enterica strains. Biofilms on stainless steel surfaces were treated with 2.5, 5, or 10% (recommended working concentration) of the sanitizer applied as a foam or liquid solution. Our results showed that the multicomponent sanitizer significantly (P < 0.05) reduced the amount of viable biofilm cells at all concentrations, as enumerable bacteria were only detected after low-concentration treatments (2.5 or 5%) with short exposure periods (10 or 20 min per treatment). Treatments with high concentrations (5 or 10%) of the sanitizer, multiple consecutive treatments (2 or 3 treatments), and sufficient exposure time (>60 min per treatment) effectively controlled pathogen survival postsanitization. Examination with a scanning electron microscope showed that treatment with the sanitizer at 5% strength significantly dissolved the connecting extracellular polysaccharide matrix and removed the majority of the biofilm matrix. No intact biofilm structure was detected after the 10% sanitizer treatment; instead, scattered individual bacteria with visibly altered cell morphology were observed. The treated bacteria exhibited indented and distorted shapes with shortened cell length and increased surface roughness, indicating severe cell injury and death. Our observations indicated that consecutive treatments with the multicomponent sanitizer was effective in inactivating E. coli O157:H7 and S. enterica biofilms and preventing pathogen reoccurrence.


Assuntos
Escherichia coli O157 , Salmonella enterica , Biofilmes , Contagem de Colônia Microbiana , Matriz Extracelular de Substâncias Poliméricas , Microbiologia de Alimentos
20.
J Food Prot ; 73(2): 366-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20132685

RESUMO

Direct-fed microbials (DFM) have been identified as potential preharvest interventions for the reduction of foodborne bacterial pathogens such as Escherichia coli O157:H7. This study evaluated the efficacy of a DFM consisting of Bacillus subtilis strain 166 as an antimicrobial intervention strategy for the reduction of prevalence and load of E. coli O157:H7 in feces and on hides of feedlot cattle. Cattle (n = 526) were divided among 16 feedlot pens. Half of the pens received the DFM, and the other half did not. Hide and fecal samples were collected from each animal on days 28, 63, and 84 of the feeding trial. Over the course of the 84-day feeding period, there were no significant differences observed between treatments for either hide or fecal prevalence of E. coli O157:H7, or for the percentage of animals that were shedding E. coli O157:H7 at high levels (> or =200 CFU/g) in their feces or harboring E. coli O157:H7 at high levels (> or =40 CFU/cm(2)) on their hides. In addition, there was no significant difference between the average daily gains for the treated and control groups, with both groups averaging 1.3 kg/day. We concluded that the DFM tested would not be an effective preharvest intervention against E. coli O157:H7.


Assuntos
Ração Animal/microbiologia , Bacillus subtilis/fisiologia , Bovinos , Escherichia coli O157/crescimento & desenvolvimento , Probióticos/administração & dosagem , Animais , Antibiose , Bovinos/crescimento & desenvolvimento , Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Microbiologia de Alimentos , Prevalência , Distribuição Aleatória , Pele/microbiologia , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA