Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 478(11): 2145-2161, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032265

RESUMO

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Sítios de Ligação , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Conformação Proteica
2.
ACS Chem Biol ; 17(6): 1586-1597, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35613319

RESUMO

Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.


Assuntos
Histona-Lisina N-Metiltransferase , Peptídeos , Sítios de Ligação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Complexos Multienzimáticos/metabolismo , Peptídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA